
COMMUNICATIONS OF THE ACM April 2004/Vol. 47, No. 4 21

T
he concept of non-monolithic file systems is
not new. “File forks” were an integral part of
the original Macintosh Hierarchical File
System. Apple separated file information

into data and resource forks, where the resource
fork contains a resource map followed by the
resources, or links to resources, needed to use the
data. Typical resources would include program
code, icons, font specifications, last location of
application window, and
other file-related metadata
that is not stored in the disk
catalog (for example, file sig-
natures). File forks may be
null, and many files contain
both forks, the accidental
separation of which pro-
duces the dreaded “error
39.” The Macintosh
Resource Manager could
control up to 2,700
resources per file, though
the linear search, single-
access control strategy
makes managing more than
a few hundred resources cumbersome and slow. File
forks remained in use until Apple introduced OS X.
Built on a Linux kernel, OS X stores resources in
separate .rsrc files.

Microsoft introduced non-monolithic file struc-
tures in its New Technology File System (NTFS)
along with the Windows NT operating system.
Since the loss of a non-null resource fork renders
the data fork useless, Microsoft had to accommo-
date non-monolithic files for compatibility with

Macintosh files and Apple Talk. Among the many
innovations in NT, Microsoft ported non-mono-
lithic file structures from the Macintosh world over
to the PC. In Microsoft parlance, non-monolithic
file structures are called file streams.

Alternate Data Streams
One may make reasonable comparisons between
the Macintosh data and resource forks and the

Microsoft primary and
alternate data streams,
respectively. In NTFS the
primary data stream (aka
default data stream or
unnamed data stream or,
simply, file) is called
$DATA. A large number
of alternate data streams
(ADSs) may be associated
with a single primary data
stream (PDS). We empha-
size that ADSs are associ-
ated with, and not
attached to, primary data
streams. The associations

are maintained in the Master File Table (MFT),
and managed by a variety of application program
interfaces (APIs). As a simple illustration, a right
mouse click on any NTFS file and subsequent
selection of the properties tab will recover ADS
metadata through a standard Windows MFT API.

Microsoft’s approach to non-monotonic file
structures has some unusual properties:

• Anything digital can become an ADS: thumbnails

Wading into Alternate Data Streams

M
IC

H
A

EL
 S

H
C

R
Ö

TE
R

Hal Berghel and Natasa Brajkovska

The open-ended nature of ADSs makes them an extremely
powerful Windows resource worthy of deeper exploration.

Digital Village

22 April 2004/Vol. 47, No. 4 COMMUNICATIONS OF THE ACM

and icons, metadata, passwords, permissions, encryp-
tion hashes, checksums, links, movies, sound files,
binaries, whatever. We’ll return to the “whatever” in
a moment.
• NTFS supports a very large number of ADSs. The
Purdue COAST project estimated an upper bound
of 6,748 ADSs per primary data stream on Win-

dows NT 4. (see www.cerias.purdue.edu/coast/ms_
penetration_testing/v50.html).
• Since ADSs are separate files, they appear hidden
from applications that call routine Windows APIs.
The use of ADS is completely transparent to stan-
dard Windows file management tools—it’s as if they
don’t exist. This includes such key system applica-
tions as Windows Explorer and Task Manager, and
core command line executables like DIR.
• The normal data stream ADS API syntax in the
Windows NT/2000/XP series is <filename>:
<ADSname>:<ADStype> (where ADStype is optional).
• ADSs form a tree structure that has a maximum
depth of 1. The decision to prevent nesting of ADSs

seems to us to be an unnecessarily arbitrary and
shortsighted limitation.

The best way to get a feel for ADS is with some
hands-on experience. Our example shown in the
sidebar here may seem clumsier than necessary at
first, but it has the benefit of simplicity because the

entire demonstration
can be completed
within a single DOS
command prompt
window.

Phishing and
Executable Streams
As previously stated,
ADSs may contain
anything—text,
images, sound and
video files—anything.
The most interesting
type of “anything” is
the binary executable.
Presuming readers of
this column have com-
pleted the example in
our sidebar and are up
for the challenge, we’ll

now attach an executable to an empty text file. In this
case we’re assuming the Windows XP system calcula-
tor is stored in the location C:\windows\system32\
calc.exe. If not, create a path to the harmless exe-
cutable of choice.

We now rename <calc.exe> as the ADS, <d.exe>,
and associate it with the empty text file <test.txt>:

C:\...\test>type c:\windows\
system32\calc.exe > .\test.txt: d.exe

and execute the ADS directly:

C:\...\test>start .\test.txt:d.exe

You should see the Windows calculator appear on

Digital Village

Figure 1. Recovering hidden Alternate Data Streams.

COMMUNICATIONS OF THE ACM April 2004/Vol. 47, No. 4 23

ADS Example

T his exercise was run on Windows XP Pro with
administrative privileges. Similar results would

result if it were run under Windows 2000 or even Win-
dows NT, with slight adjustments to the syntax.

First, open a DOS command prompt window. Then
make and move into a new directory—in our case
<test>. This step is important, because we’ll need to
remove this entire directory after our experiment to
restore the computer to its pre-experiment state.
Do not perform this experiment in a root directory,
or any other directory that you are unwilling to
erase. The commands

mkdir test
cd test

will create a new directory, <test>, to experiment in.
We then create the simplest of ADS, one that is
attached to a folder, as follows:

C:\...\test>echo “this is an ADS attached
to the ‘test’ subdirectory” > :ads0.txt

A display of the contents of the directory:

C:\...\test>dir

reveals an empty directory. How can that be? This is
where the NTFS sleight-of-hand comes in: ADS are
hidden to Windows applications that rely on the
standard MFT APIs. “DIR” is one such example, as is
Windows Explorer and the file properties box.

In the preceding example, since the PDSname
field is null, <ads0.txt> is by default associated with
the subdirectory name in the MFT. Directories in Win-
dows are themselves files that reference other files.

Next, we’ll attach an ADS to an empty file:

C:\...\test>echo “this is the first ADS
associated with file1.txt”>
file1.txt:first_ads.txt

Note that we never created <file1.txt> to begin with.
Since the colon is not a legitimate filename charac-
ter, the Windows command processor understands

that the data to be echoed is intended for the asso-
ciated ADS. Since the ADS has to be associated with
something in the MFT, Windows conveniently creates
an empty file named <file1.txt> for the association.
In Microsoft parlance, we think of this as a single file
where <file1.txt> is the primary/default/unnamed
data stream, and a named stream labeled
<first_ads.txt>.

This time the display of the contents of the direc-
tory reveals only an empty file <file1.txt>. Now, let’s
add a second ADS to file ads1.txt

C:\...\test>echo “this is the second ADS
associated with file1.txt”>
file1.txt:second_ads.txt

Repeat

C:\...\test>dir

and observe that nothing has changed. We still have
an empty file, <file1.txt>, in a directory consisting of
0 bytes.

Appearances to the contrary, we may confirm
that these ADSs do indeed exist by typing the fol-
lowing:

C:\...\test>more < :ads0.txt
C:\...\test>more <file1.txt:first_ads.txt
C:\...\test>more <file1.txt:second_ads.txt

Your results should look like those in Figure 1.
Of course, the more useful ADS will be associated

with non-null files. To wit:

C:\...\test>echo “this is the data for
file 2” > file2.txt
C:\...\test>echo “this is the data for
ADS1 of file 2” > file2.txt:ads1.txt
C:\...\test>echo “this is the data for
ADS2 of file 2” > file2.txt:ads2.txt

The remaining 6,746 repetitions are left to the
reader. c

24 April 2004/Vol. 47, No. 4 COMMUNICATIONS OF THE ACM

Digital Village

your screen. A directory listing still reveals only pri-
mary data streams. The executable is entirely hid-
den, but very much there—and obviously active—as
can be confirmed by looking at the active processes
listing under Windows Task Manager by pressing
the <CTL><ALT> keys simultaneously (see
Figure 2).

It is apparent that with
minimal effort one can suf-
ficiently mask the hidden
executable so that its func-
tion is obscured. Of

course, masking an executable by just changing the
filename is neither clever nor particularly deceptive,
so a hacker might add the requisite stealth by invok-
ing the native Windows Scripting Host with the
control parameters set to execute files with non-exe-
cutable file extents. In this way one could rename
<trojan.exe> as something innocuous like <help.fil>,

and execute it with WSH.
It is interesting to note that prior to Windows XP,

the ADS didn’t even appear in the process listing.
Had we hidden the ADS behind something innocu-
ous like <cmd.exe> or <notepad.exe>, the execution
of the ADS would be undetected.

The hiding of the function behind an innocuous
appearing executable is akin to Internet
scams where the unsuspecting are lured to
spoofed Web sites that appear harmless
while actually harvesting personal or pri-
vate information—a technique called
“phishing.” For lack of a better term, we
may think of planting hostile executables
in ADS as “file phishing”: creating an
environment in which things are not as
they appear.

Before we proceed, let’s clean up the
data streams, directories, and files on your
computer. ADSs can only be deleted if
their associated primary data stream is
deleted, so once you’re done experiment-
ing, erase all of the files in your test direc-
tory, go up one directory and remove the
directory itself, or simply erase the entire
<test> directory with Windows Explorer.

At this point you’re back where you
started, no worse for wear.

NTFS Master File Tables
To understand ADS, one must investi-
gate the way the Windows MFT record
works. The MFT is a relational database

in which the records correspond to files and the
columns to file attributes. Following 16 records of
metadata files, there is at least one MFT record for
each file and folder (subdirectory) on all hosted
disk volumes. All records are 1Kb in size, allowing
the data and attributes of very small files or folders
to be stored in an MFT record itself. Larger files
and folders are referenced by pointers within their
records. Folders are externally organized as B-trees.

Each record contains basic file attributes relating
to date and time stamps, permissions, filename and
extent, security descriptors, and so forth. The utility

Figure 2. Windows Task
Manager’s report of the
Windows calculator executing
as the Alternate Data Stream
<test.txt:d.exe>.

of the MFT results from the fact that it is set up to
automatically use external pointers for all data that
cannot fit within the 1Kb record. Having this in
place allows virtually unrestricted, scalable control
over file management. All data streams (regardless of
whether they’re primary or alternate) maintain all of
the necessary information for the Windows APIs to
manipulate them: for example, allocation size, actual
data length, whether they’re compressed or
encrypted, and so forth. Given this situa-
tion, the proliferation of data streams
involves little more than the proliferation
of pointers within the MFT. The only
mitigating factor is that the ADSs cannot
be nested, which means any ADS file
organization beyond a one-level deep tree
would have to be accomplished at the
applications layer.

As we indicated, the low-level Win-
dows APIs (such as CreateFile, Delete-
File, ReadFile, WriteFile) were designed
to treat all data streams the same, ADSs
or PDSs. Under NTFS, ADS support is
completely transparent at that level. The
weakness is that the higher-level utilities
(DIR, Windows Explorer, Task Manager)
were not intended to support ADS. This
is where the truly baroque nature of
Microsoft’s ADS design logic makes itself
known. One can use the low-level APIs
to manipulate ADSs easily, but the
higher-level utilities conceal their pres-
ence. From the end user’s perspective, it’s
hard to delete a data stream without first
being able to find it! Fortunately there
are third-party utilities such as Lads,
ScanADS, Streams, and Crucial that help
locate ADS by working directly with the
low-level APIs (especially, the “backup_” func-
tions). Figure 3 illustrates their use on our <test>
directory after we completed the experiment
described previously. Note that Streams requires a
separate test for folder ADS (remove the “-s” para-
meter). Crucial has a GUI interface and only scans
entire drives, and will not be shown here.

Security Implications of ADSs
A Google search for the phrase “alternate data
streams” will yield several thousand hits, most of an
alarmist nature. This is unfortunate in many ways,
because the power of ADSs has yet to be realized.
While it is true that there is malware that takes
advantage of ADSs (W2k.stream is one example),
that malware has not proven to be as destructive as
the more mainstream varieties that rely on buffer

overflows, NetBIOS and
RPC vulnerabilities, session
hijacking, or address spoof-

ing. As a datapoint, all W2k.stream threat vectors
were assessed “low” by Semantec (see www.sarc.com/
avcenter/venc/data/w2k.stream.html).

What created most of the alarm was the “hidden”

COMMUNICATIONS OF THE ACM April 2004/Vol. 47, No. 4 25

Figure 3. Typical ADS report-
ing utilities at work.

nature of ADS combined with the absence of
Microsoft utilities that supported direct access and
control within native file utilities—but, then, that
wasn’t why Microsoft built ADS into NTFS in the
first place. The mere mention of a hidden feature to

anyone with even a slight anti-Microsoft bias is guar-
anteed to produce an animated response. Unfortu-
nately, Microsoft added fuel to the fire by failing to
include a “display ADS” checkbox as a Windows
Explorer configuration option and direct ADS control
at the utility level. Most users wouldn’t be bothered
with ADS management, but full file disclosure would
have been comforting to those prone to anxiety attacks.

The facts are less alarming than the several thou-
sand Google hits might lead us to believe. While it is
true that ADS could be used as a conduit for mal-
ware executables, so can email attachments. Further,
modern anti-virus scanners routinely scan for mal-
ware in all Windows data streams, including ADS,
so the risk of intrusion should be no greater with
ADS than PDS.

The same is true for covert channeling. ADS
could be used for that purpose, but so could the
options field in a normal ICMP packet. With the
ease that malware such as Loki conducts encrypted
covert data channeling at the IP level, why would a
hacker become involved with the applications layer?

The claim that ADSs are difficult to delete is
equally misleading. ADS file space gets reallocated in
just the same way that PDS and directory space
does. File-wiping products such as Cyberscrub
(www.cyberscrub.com) even include ADS “scram-
blers” for extra safety.

By any reasonable measure, ADS vulnerability has
been overstated.

Conclusion
Alternate Data Streams have demonstrated consider-
able potential in object-oriented OSs and applica-
tion environments, or those that involve complex
file and data structures. While Microsoft is officially
committed only to the Object Linking and Embed-
ding (OLE) 2.0 model of structured storage, ADS
will likely remain with us as long as Windows OSs
continue to use NFTS. To quote Microsoft:

“Alternate data streams are strictly a feature of the
NTFS file system and may not be supported in future
file systems. However, NTFS will be supported in
future versions of Windows NT. [including Windows
2000 and XP] Future file systems will support a model

26 April 2004/Vol. 47, No. 4 COMMUNICATIONS OF THE ACM

Digital Village

URL Pearls

Agood overview of Macintosh file forks is available
at the Apple Web site: developer.apple.com/

documentation/mac/Files/Files-14.html.
Microsoft’s MSDN Library (msdn.microsoft.com/library/)

is a reliable source of information on Windows NT
operating systems, including APIs and ADS. Detailed
documentation on NTFS is available at the Microsoft
Technet site (www.microsoft.com/technet/).
The 1998 overview of NTFS by Richter and Cabrera in
the Microsoft Systems Journal at www.microsoft.com/
msj/1198/ntfs/ntfs.aspx is still worth reading. This
article also has links to sample code.

The general-purpose Windows utility that is ideal
for ADS manipulation is <cp.exe>, variations of
which may be found in either the Windows Resource
Kit or from the Sourceforge.net GNU utilities library
at unxutils.sourceforge.net, the latter being free.

Two good sources for the fundamentals of ADS
programming are Dino Esposito’s A Programmer’s
Perspective on NTFS 2000 Part 1: Stream and Hard
Link at msdn.microsoft.com/library/en-us/dnfiles/
html/ntfs5.asp?frame=true, and Eugene Kaspersky
and Denis Zenkin’s, “NTFS Alternate Data Streams,”
Document 19878 in Windows and .NET Magazine
(www.winnetmag.com). Esposito’s article contains
an interesting code fragment that adds a new prop-
erty page with stream information. The Code Project
(www.codeproject.com/csharp/
CsADSDetectorArticle.asp) also contains useful
code fragments.

Effective ADS detectors include ScanADS
(www.securiteam.com/tools/5JP0C2KAAQ.html),
LADS (www.heysoft.de/Frames/f_sw_la_en.htm), Cru-
cialADS (www.crucialsecurity.com), and Streams
(www.sysinternals.com/ntw2k/source/misc.shtml).

based on OLE 2.0 structured storage (IStream and
IStorage). By using OLE 2.0, an application can sup-
port multiple streams on any file system and all sup-
ported operating systems (Windows, Macintosh,
Windows NT, and Win32s), not just Windows NT.”
(See the Microsoft Knowledge Base article
“HOWTO: Use NTFS Alternate Data Streams”
(number 105763), available at support.microsoft.
com/default.aspx?scid=kb;en-us;105763.)

There is no question that ADSs are underutilized
in Windows. Like previous major software houses,
Microsoft felt compelled to opt in favor of backward
compatibility. For example, to use <desktop.ini> files
to parse the contents of a directory and <.tmp> files
to hold transitory data, seems retrogressive at best
when ADS could have accomplished the same thing
in a far more straightforward manner. After all, nei-
ther file type has any meaning apart from the associ-

ated directory or primary data stream anyway, so
using ADS is the natural way to handle them. But,
that would have meant that such information could
not be shared with Windows platforms with FAT16
and FAT32 file systems. To hobble the OS is less
costly than dealing with 40 million additional hits at
the help desk.

But the most unfortunate aspect of ADS is that
the negative press and exaggerated claims of vulnera-
bility have polluted the waters to such as degree that
the true potential of ADS may never be realized.

Hal Berghel (www.acm.org/hlb) is a professor and director of the
School of Computer Science and director of the Center for Cybermedia
Research at the University of Nevada, Las Vegas.
Natasa Brajkovska (natasa@crlmail.i2.nscee.edu) is a research
assistant at the Center for Cybermedia Research at the University of Nevada,
Las Vegas.

© 2004 ACM 0002-0782/04/0400 $5.00

c

COMMUNICATIONS OF THE ACM April 2004/Vol. 47, No. 4 27

