
COMMUNICATIONS OF THE ACM May 1999/Vol. 42, No. 5 11

Digital Village
Q

U
EN

TI
N

 W
EB

B

Hal Berghel

Here we are, eight months
out and counting. We’ve
already seen glimpses of

things to come. Stories like that
of Lynn Electric, Bluefield, WV.
When the company tried to close
its 1998 payroll “all documents
reverted to 1944.” (Washington
Post, 1/1/99.)

In Sweden, airport police were
unable to issue one-year tempo-
rary passports after midnight,
Dec. 31, 1998. The computers
refused to accept a termination
date beyond Dec. 31, 1999.
(Source: Bruce Taylor.)

Palace Produce sued Tec Amer-
ica Inc. because their system was
incapable of handling credit cards
with an expiration date past
01/99. They won their case and
were awarded $250,000 in dam-
ages. (Source: Peter de Jager.)

Newspapers, magazines, and the
Web are replete with similar sto-
ries. And there is every expectation
these sorts of incidents will con-
tinue for the immediate future.
Examples might include the June
30, 1999 fiscal roll-overs for many
organizations. This may provide a
useful estimate on the number of
active legacy applications that have
so far escaped repair.

Also, consider accounting and
spreadsheet software that seem to
take on a mind of their own when
it comes to manual and automated
attempts to reset to correct dates.

Some system-sensitive processes
will be reset to 1900 at century’s
end, resulting in system failure
and data loss (exactly how many
of these will occur is subject to
wide speculation).

Some post hoc BIOS’ repairs
will conflict with software fixes,
resulting in new and as yet un-
imagined categories of software
and data conflicts. Perhaps OS
vendors should put a new prompt

in their toolbox akin to Microsoft’s
“General Protection Fault,” some-
thing like “Generic Y2K Fault:
Reboot without prejudice.”

Small, local telephone compa-
nies may charge for 99-year calls
those which span midnight next
New Year’s Eve.

An occasional blackout could
result if a noncompliant computer
in the grid get’s confused about
the date.

Valid credit cards may be
rejected as out of date.

Small bank ATMs may only
work with a fraction of the sup-
ported debit and credit cards.

Air Traffic Control problems
may arise in the smaller, local air-
ports spawning missed connec-
tions for the passengers and
load-scheduling problems for air-
port hubs.

In some smaller corporations,
security IDs may fail to work for
awhile, necessitating doors left ajar,
and a temporary, but large, lapse
in security. It’s not inconceivable
that time-locks on small bank safes
may fail to operate correctly.

Of course, the gloom-and-
doom forecasters see things in a
very different light.

The Essence of Y2K
As we examined in an earlier col-
umn (Communications, Mar.,
1998), the generic problem
underlying the Y2K bug is actu-

How Xday Figures in the
Y2K Countdown

12 May 1999/Vol. 42, No. 5 COMMUNICATIONS OF THE ACM

ally an inductive, logical fallacy.
This new riddle of inductive rea-
soning (aka, Goodman’s Paradox)
derives from the fact that we can-
not always distinguish law-like
regularities from contingent or
accidental ones. We blithely
assumed that an operating system
date stamp satisfied the predicate
“___ is the current date on the
Gregorian calendar” when, in
fact, the predicate was “___ is the
current date on the Gregorian
calendar only before time, t; and
not thereafter.” The accuracy up
to this point in computing his-
tory has been contingent and not
law-like. In the normal course of
events, this would be confirmed
at t = midnight, Dec. 31, 1999.
Literally billions of dollars are
being spent to avoid this result.
In the end, it is the same sort of
short-sightedness behind the five-
digit automobile odometer. It was
inconceivable in 1920 that any
car would last 100,000 miles, just
as it was inconceivable in 1959
that COBOL legacy applications
would still be in use in 1999.

The Y2K problem is actually a
hydra-headed monster that rears
its ugly head in multifarious ways.
For instance, even if a patch han-
dles the Y2K transition, it may
not handle the leap year. Our
astronomical year is 365.242 days
on the Gregorian calendar. Falling
short of 365.25 by .008 days/year
causes big problems over time, so
three-fourths of the century years

are common (that is, non-leap),
while those evenly divisible by 400
as, in the year 2000, are leap. So,
any enduring Y2K fix has to
accommodate the leap-year status
in 2000 denied its century prede-
cessor, 1900. In contrast, every
year evenly divisible by 4000 is a
common year despite the fact it’s
also evenly divisible by 400. Just
think, our descendants may tele-
port themselves around the uni-
verse in search of quick fixes for
the Y4K bug.

Moreover, even if the Y2K
problem disappears, we will still
have to deal with the sister prob-
lem of calculating the “elapsed
time in Unix.” A manual might
say that Unix function x produces
today’s date in Register 1. In fact,
it won’t report the date at all,
rather it will calculate the date on
the basis of the number of seconds
which have expired since January
1, 1970, until count, t = 2**31
(assuming the sign-bit is retained,
this is Jan. 18, 2038). Just as with
Wintel machines, we naively
designed our computers for pro-
jectable predicates, but actually
implemented nonprojectable ones
in hardware.

There may be several layers of
Y2K problems. In an earlier col-
umn, I used DOS as an example.
Not only does DOS not roll-over
automatically to the 21st century,
it only recognizes dates reported
by the real-time clock that fall
within the interval 1980–2099.

We observe that this only appears
ad hoc and arbitrary until one
traces back the origin of the PC.
This gets even more convoluted
when one looks at FILE_DATE
values. In this case, the reported
date is a compression of the DOS
reported date according to the for-
mula ((year-1980) x 512)+(month
x 32)+day. Hence, Dec. 31, 1999
becomes the unsigned word inte-
ger 279Fh (10,143). It is interest-
ing to note the roll-over for the
file date would actually be
1980+2**7 years=2108, but since
DOS will only recognize the 19th
and 20th centuries, the file date
will be undefined under DOS
beyond 2099. As I observed
before, the inductive fallacy which
underlies Y2K is to be found in
our hardware and the inner-most
recesses of our BIOS.

Still another example involves
the lack of orthodoxy when it
comes to four-byte
REPORT_DATE standards
(ISO, Microsoft, European).
There are several in use, all
incompatible with one another,
which will continue to present
headaches long after the aftertaste
of Y2K has past.

Y2K Solution Strategies
Of course, we’ve seen as many
potential solutions as there are
potential pitfalls. The following
categorization of Y2K fixes is
adapted from Capers Jones arti-
cle “Finding Time for the Year
2000 Repairs” (www.spr.com).

1. Replacement of noncompliant
applications with compliant ones.
Most appropriate with popular,
commercial software such as pro-
ductivity applications and utili-
ties. Advantage: Simplicity and

The Y2K problem is actually a
hydra-headed monster that rears
its ugly head in multifarious ways.

COMMUNICATIONS OF THE ACM May 1999/Vol. 42, No. 5 13

Digital Village

economy (assuming that every-
thing goes according to plan).
Disadvantage: Applies mostly to
popular, commercial software.
2. Repair of noncompliant appli-
cations. Most appropriate with
proprietary and legacy applica-
tions. Advantage: Infinitely cus-
tomizable. Disadvantage: Probably
not enough time left to handle
large systems.
3. Termination of noncompliant
programs on an as-needed basis.
Advantage: A real managerial no-
brainer, and it may be the default
strategy after midnight next New
Years eve. Disadvantage: It will
require that automated processes
be done manually or partially
during the repair cycle, which will
be very expensive.
4. Masking the data exchange
between applications rather than
try to fix the applications them-
selves. Masking consists of several
forms, including pivoting—a
pivot year is the internally
defined boundary that software
uses to distinguish between the
19th and 20th century. For exam-
ple, if the pivot year were chosen
to be 29, a program could inter-
pret any two-digit date within the
range 29–99 as 19xx; else, 20xx.
Other fixes have set pivot years at
30, 40, 48, 51 “current +
20,”current + 70,” 1980, and so
forth. Of course, these applica-
tion-specific fixes have to cooper-
ate with each other. The test case
will be the import and export of
data between applications with
different pivot dates which should
produce some excitement.

Masking may also involve con-
version of the two-byte date field
into some other form. For exam-
ple, 16-bit binary enumeration
beginning at year 0 on the Grego-

rian calendar would carry us
through for another 60,000+
years. The problem, of course, is
that everyone has to agree to the
convention, and it’s not likely this
agreement will surface in the next
eight months.

Another masking form is the
encapsulation of date exchange
information between application
and data. To illustrate, the shift of
a date downward by a multiple of
28 years mirrors the day-date cor-
respondences of the current calen-
dar. So, an application might
retrieve the date of 03 from a file,
reduce it to 75 for internal pro-
cessing, and then convert it back
by adding 28 back before storing,
thereby avoiding any Y2K colli-
sion (hopefully).

Creating redundancy across a
databases so that applications will
only run on them if their date
fields are the same size is another
masking technique. An obvious
downside is that this technique
consumes twice the space until
everything converges on the four-
digit date field, but this pales in
comparison with the enormous
difficulty of keeping the databases
synchronized.

Also, object-code interception

which is predicated on the
assumption the internal represen-
tations of dates is irrelevant if we
can intercept, change, and main-
tain them as they are shared across
applications and systems. One of
the most innovative ideas for
object-code interception is to be
found in Bob Bemer’s clever Xday
(eXchange day) proposal.

Bob Bemer’s Xday
Bob Bemer is a genuine com-
puter pioneer. Among his many
advertised accomplishments are
the invention of the ESCape
sequence, the creation of ASCII,
coining the term “Cobol,” and
inventing its “Picture Clause.”
Since 1949 he’s held prominent
positions with IBM, Honeywell,
and General Electric, to name
but a few. Having been bitten by
Y2K fever, Bemer came out of
retirement to solve the problem.
While his product, Vertex 2000,
uses an object-code interception
strategy, it’s independent of
Bemer’s Xday strategy.

Bemer was early to recognize
that a Y2K fix can take one of two
strategies: internal (for example,
converting two-digit date fields to
four-digit fields) or external (for

Gregorian date Julian date

■ January 1, 0001 1721475

■ 1800 2378497

■ 1900 2415021

■ May 16, 1998 2450950

■ January 1, 2000 (xday) 2451545

■ 2100 2488070

■ 2400 2597642

■ August, 3501 3000000

O
pe

ra
ti

o
na

l r
an

ge
19

99
-3

50
1

implied

Figure 1. Gregorian vs. Julian dating

example, object-code intercep-
tion). As it turns out, the former
solution is more difficult and per-
manent, while the latter may be
easily implemented but
ephemeral. However, a quick fix
with just a century’s breathing
room would be of enormous value
at this late date.

That’s where Xday comes in.
Bemer observed that if we substi-
tute for our Gregorian solar calen-
dar a variant of its Julian parent,
we have a unique way of represent-
ing each day into which every con-
ceivable date format may be
mapped. 1 A.D. is Julian
1721475; 1900 A.D. is 2415021;
2000 A.D. is 2451545; 2400 A.D.
is Julian 2597642. Coincidentally,
the most significant digit in the
Julian date, Bemer observes, stays
unchanged for 27 centuries, with
15 centuries remaining (Figure 1).
Assuming that Y2K will no longer
be a problem in 3500, we imply
the first digit without reservation.

Now the magic comes in.
Bemer points out that the next
two digits of Xday (Julian date
sans leading digit) fall within the
range of 45 to 99 until August 14,
3501. This has enormous conse-
quences for his object-code inter-

ception strategy because these two
digits cannot be confused with
existing day, month, or year val-
ues, regardless of the cultural for-
mat or order in which the fields
appear (Figure 2). A collision
could have occurred when 43-10-
03 would have corresponded with
Xday of 431001, but that’s not
much of a chink in the armor as it
predates the computer era.

As if that isn’t clever enough, it
also turns out that Xday occupies
the same six-digit space used for
existing date formats, so it can be
used interchangeably. If one has
the time and energy, the Xday
value could actually be used to
replace the problematic date fields
(ala the replacement strategy dis-
cussed earlier). On the other
hand, it will also serve well (and is
really intended) for object-code
interception since it can’t conflict
with other date fields in data
streams. Of course, the inter-
change requires some arithmetic
(related algorithms may be found
at www.software.ibm.co
m/year2000/tips15.html. We note
that Xday = LillianDay +
299160), and there has yet to be a
reliable estimate of overhead, and
there are sundry implementation

issues to be resolved, but none
loom large enough to detract from
Bemer’s brilliant idea. Unfortu-
nately for all of us, it’s an idea
whose time has not yet come—
and time is running out.

I would be remiss if I failed to
also mention that Xday methodol-
ogy is a public-domain resource
which involves no proprietary or
patented ideas or concepts. As
such, it is to be distinguished from
the “Y2K Silver Bullet Patent”
(#5,852,824) which was issued to
Roger Brown by the U.S. Patent
and Trademark Office as this col-
umn goes to press which involves
proprietary encapsulation routines.
An even earlier patent
(#5,600,836) was awarded to
TOCS (Turn of the Century Solu-
tion) in Nov. 1995 for another
encapsulation routine.

Where Things Stand
Today
As the sidebar illustrates, there is
no shortage of information on
Y2K on the Web, ranging from
alarmist documents ravings to
corporate repair strategies. For
most of us who fall into the cate-
gory of millenia moderates, Y2K
is expected to be a major inconve-
nience which some authors liken
to a granddaddy of all brownouts,
a flood of the century, and an ice
storm to end all ice storms. Such
being the case, we’ll have a con-
siderable mess on our hands. But
life as we know it will go on, and
Y2K, too, will pass. Should that
not happen, I herewith reserve the
right to withdraw this statement
and to deny under oath that I
ever made it.

Hal Berghel (www.acm.org/~hlb) is a
professor of computer science at the University
of Arkansas and a frequent contributor to the
literature on cyberspace.

c

14 May 1999/Vol. 42, No. 5 COMMUNICATIONS OF THE ACM

YYYYMMDD Xday YYMMDD MMDDYY DDMMYY

18581116 400000 581115 111558 151158

19000101 415021 000101 010100 010100

19431003 431001 431003 100343 031043

19990101 451180 990101 010199 010199

19991231 451544 991231 123199 311299

20000101 451545 000101 010100 010100

20230224 460000 230224 022423 240223

21320831 500000 320931 083132 310832

35010814 999999 010814 081418 140801

Figure 2. Conflict-free Xdating

COMMUNICATIONS OF THE ACM May 1999/Vol. 42, No. 5 15

Digital Village

Our Web Ferret metalevel search engine found 4,000 URLs matching the query “year 2000” or “Y2K” before my

connection timed out. Here are some sites I found interesting.

For general information
• The Year 2000; www.year2000.com. Peter de Jager’s extensive Web site on the Y2K problem and an extensive

listing of Y2K vendors.
• ComputerWorld’s Y2K info site; www.computerworld. com/res/year_2000.html. Postings of related CW articles.
• PC Magazine’s Y2K site; www.pcmag.com/Y2K. Postings of the magazine’s Y2K articles.
• Software Productivity Research’s Web site; www.spr.com. Software engineer and company founder Capers

Jones’ extensive writings on the Y2K problem.
• The Year 2000 Problem and the New Riddle of Induction; www.acm.org/~hlb/col-edit/digital_village/mar-

98/dv_3-98.html. Analysis of the origin of the Y2K problem which appeared in the Mar. 1998 Communication.
• Y2K News Magazine; www.Y2Knews.com. Full-featured Web site on Y2K.
• Information Technology Association of America; www.itaa.org/year2000/. Extensive information for MIS managers.

Vendors of Y2K software
• Commtec Systems 2025; www.doitnow.com/~commtec/. Commercial vendor of Roger Brown’s patented Y2K

Silver Bullet software, QIPP.
• BigiSoft; www.bigisoft.com/. Vendor of Bob Bemer’s Vertex 2000 software for IBM mainframes.
• TOCS; www.tocs.com. Vendor uses program encapsulation that takes advantage of the fact the calendar

repeats every 28 years. By setting the clock back multiples of 28 years, the days, weeks and leap-year status
remain unchanged.

• Logica; www.logica.com/year2000/. Vendor offers both data and program encapsulation.

Computing vendors
• IBM’s Y2K site; www.software.ibm.com/year2000/index.html. IBM’s spin on Y2K problems and solutions.
• Microsoft Year 2000 Resource Center; www.microsoft.com/technet/year2k/default.htm. Ditto for Microsoft.
• Corel; www.corel.com/2000/index.htm
• Dell; www.dell.com/year2000/.
• Gateway; www.gateway.com/.
• Compaq; www.compaq.com/year2000/.
• Apple; www.apple.com/about/ year2000/. Apple claims that “... since their introduction in 1984, Macintosh comput-

ers have had the ability to make the transition to the year 2000. In fact, the Mac OS and most Mac applications can
handle internally generated dates correctly all the way to the year 29,940.” (Italics added. However, it isn’t clear
whether “having the ability to make the “Y2K transition” and “being Y2K compliant” are equivalent expressions.)

Sundry Y2K compliance testing and repair utilities
• RighTime Clock; www.rightime.com. Diagnostic and Terminate and Stay Resident fix (TSR).
• McAfee 2000 Toolbox; www.nai.com/Y2K/. Diagnostic with both TSR and continuous BIOS-checking.
• WRQ’s Express 2000; www.wrq.com. Data inventory and monitoring of applications.
• AMS Group’s DateSpy; www.datespy.com. Date-sensitive searching in selected applications.

Miscellaneous
• Gary North’s Y2K Links and Forums; www.garynorth.com. State-of-the-art alarmism.
• Duh2000; www.duh-2000.com. Stupidest things said about Y2K. Humor mixed with attitude.
• Art Bell’s Web site; www.artbell.com. Considerable Y2K information archived by the popular late-night radio

talk-show host.

URL PEARLS

