
A Protocol Layer Survey of Network Security

JOHN V. HARRISON AND HAL BERGHEL

Center for Cybermedia Research
University of Nevada, Las Vegas
Las Vegas, NV 89154
USA

Abstract
It is difficult to estimate how much more the Internet will impact modern society.
The use of this ubiquitous computing and communication platform to provide
instant worldwide communication, increase business productivity, create more
effective markets, and overcome geographical boundaries, is only now starting
to be fully appreciated. Unfortunately, all of the benefits mentioned above, and
the potential for any future benefits, are at risk of being lost due to security vul-
nerabilities. Cybercriminals and cyberterrorists, including both state-sponsored
and individual, are attacking computing and networking systems at an increas-
ing rate. And all individuals, corporations and governments who utilize these
systems are at risk.

This chapter provides a survey of this electronic information battlefield. This
survey differs from others in that it presents common categories of attacks from
the perspective of the TCP/IP protocol stack layers. By presenting categories
of attacks by protocol layer, one may focus on the nature of the vulnerabilities,
rather than become mired in the minutiae. After presenting categories of attacks,
an overview of the techniques that has been created to defend against the various
attack categories is presented.

1. Introduction . 110
2. Overview of TCP/IP . 111
3. Offensive Techniques . 115

3.1. Physical Layer . 115
3.2. Data Link Layer . 117
3.3. Network Layer . 119
3.4. Transport Layer . 122
3.5. Attacks Against the Operating System . 126
3.6. Attacks Against the User . 129

ADVANCES IN COMPUTERS, VOL. 64 109 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(04)64003-4 All rights reserved.

110 J.V. HARRISON AND H. BERGHEL

3.7. Large Scale Attack Techniques . 135
4. Defenses . 139

4.1. Authentication . 139
4.2. Encryption . 144
4.3. Firewalls . 146
4.4. Intrusion Detection Systems . 147
4.5. Antivirus Technology . 149
4.6. Construction of Secure Software . 150

5. A Forecast of the Future . 152
6. Defensive Precautions . 153
7. Conclusion . 156

References . 156

1. Introduction

John Alger [2] defines information warfare as those actions intended to protect,
exploit, corrupt, deny, or destroy information or information resources in order to
achieve a significant advantage, objective or victory over an adversary. Adversaries
can be nations, corporations or individuals. Some examples of the objectives of these
adversaries include vandalism, political activism, theft, fraud, extortion, harassment,
espionage, terrorism and the destruction of nation states.

As the sophistication, frequency, cost of computer-based information warfare at-
tacks continues to increase, the inherent limitations of traditional approaches towards
hardening current software and hardware infrastructure has become apparent. This
problem is partially due to the wide-scale deployment of Internet-connected hard-
ware and software that was originally designed for limited access, isolated, uncon-
nected environments. It is also partially due to the ever-increasing complexity and
interdependency of modern software components.

The Internet has irreversibly changed society. Its use in business and industry, ed-
ucation, health care, government and individuals is now ubiquitous and has become
a mainstay of modern communication and commerce. An almost limitless level of
information sharing is now possible. Any information resource can be made avail-
able to anyone, regardless of location, income or social status, on demand. We are
now realizing the dream of Vannevar Bush of a Memex—an indexed information
warehouse in which any individual could store all personal and public information
and communication of relevance in a way that could be immediately accessed [9].

Unfortunately, all of these benefits are in jeopardy. Hostile nations, criminal orga-
nizations, unethical business enterprises, cyberterrorists, hackers and neophyte script
kiddies are all attacking computer systems and the networks on which they reside

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 111

with increasing frequency, and in so doing affecting increasing numbers of indi-
viduals, corporations and governments with which these networks are associated.
Their motivations for information warfare span the gamut of vandalism, theft, fraud,
defamation, violence, terrorism and the destruction of governments. Everyone who
uses the network, whether they know it or not, are both exposed to, and at risk from,
these attackers [6].

This chapter is in a sense a defensive electronic order of battle. As a survey, it
differs from others in that common categories of attacks in a structure consistent with
the TCP/IP protocol stack layers [18,44] are presented. By presenting categories of
attack techniques, as opposed to the myriad of esoteric technical details necessary
to understand any one single instance of an individual attack, the reader can avoid
becoming overwhelmed by “trees” that block a view of the “forest.” After presenting
categories of attacks, we then present an overview of the technology that has been
created and deployed to defend against the various attack categories.

Our objective is to provide the reader with an understanding of the attacks that
have been, or soon will be, launched at the reader, as well as the reader’s organization
and nation. Some attack methods, e.g., deployment of malicious e-mail carrying a
virus payload, have received substantial attention in both technical and non-technical
literature. However, other types are much less well known—a situation this chapter
is meant to remedy.

2. Overview of TCP/IP

This section contains a very brief overview of the Transmission Control Protocol
(TCP)/Internet Protocol (IP) protocol, which is used to facilitate communication on
computer networks of all sizes. Some of the attacks classified below require a basic
understanding of TCP/IP. Readers who have a background in TCP/IP can skip this
section.

Like many other network protocols, TCP/IP consists of “layers” that form a
“stack.” Each layer adds new functionality not present in the layers below. The stack
of layers abstract the physical details of the network hardware to such a degree that
the highest layer can view a connection between two communicating software appli-
cations to view their communication link as reliable channel of messages between
them.

The functions that are implemented in each layer conform to a standards speci-
fication. These layers insulate software executing on the nodes of the network from
changes to, or replacement of, the underlying network technology. These nodes could
be computers, routers, switches, hubs, and other devices that wish to communicate
over the network.

112 J.V. HARRISON AND H. BERGHEL

TCP/IP is a four-layer protocol. The layer closest to the network hardware, re-
ferred to as the “lowest” in the TCP/IP layer hierarchy, is the link layer. The link
layer is implemented within the network adapter and its corresponding device driver.
Ethernet is the most common type of underlying network technology for devices
using TCP/IP. Ethernet includes a link layer specification.

The data transmitted over Ethernet networks is partitioned into units of data re-
ferred to as frames. A frame contains a hardware destination address and hardware
source addresses. These addresses identify the specific network adapters on the com-
municating devices. In theory these hardware addresses need not be unique. However
hardware manufactures are allocated ranges of addresses that are disjoint, so it is
rare for two network hardware components to share an address unless specifically
required.

Frames have a maximum size that is dependent on the network hardware in use.
Units of data to be transmitted that are larger than the maximum frame size must
be fragmented into units less than the maximum, and then reassembled on arrival at
their destination.

Residing just above the link layer in the TCP/IP stack is the network layer. The
network layer is implemented using Internet Protocol (IP). IP is the mechanism that
transmits units of data across multiple networks, which comprise the Internet, to
arrive at its destination. These units of data are transmitted across each individual
network using the link layer frames.

Every node that is attached to the Internet is assigned an IP address. In theory, these
addresses are unique globally. However, in practice some address ranges, which are
termed private addresses, are reused in manners that do not result in addressing con-
flicts. All network devices that possess IP addresses also possess link layer (physical
addresses). Together the two addresses form a (local) mapping that can be used to
infer an IP address given a physical address and vice versa.

IP includes specific protocols for reasoning with this mapping. The Address Res-
olution Protocol (ARP) is used to obtain the physical address corresponding to an
IP address. ARP uses IP to broadcast a ARP request on the network. When a host
receives an ARP request containing its own IP address, it sends an ARP reply mes-
sage containing its hardware address. There is also a Reverse ARP (RARP) protocol,
which is used by a host to determine its own IP address if it has no way of doing this
except via the network.

Internet Protocol would be unnecessary if every computer was connected to the
same Ethernet cable. All messages could be sent directly to the destination computer
using its physical address. Inherent limitations on both the size of an Ethernet net-
work, as well as restriction that only one computer can transmit successful at a time,
forces multiple networks be created hence the need for IP addressing.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 113

IP is a connectionless protocol. Each unit of data transmitted, termed a packet, is
transmitted as an independent message and is not viewed as having a relationship
with any other packets. Furthermore, IP does not ensure that a packet will reach its
final destination, or whether packets that do arrive will arrive in the original order that
they were sent. There is no information in a packet to identify it as part of a sequence
of related packets. Any mechanism for ensuring that transmitted data arrives at its
destination, and in the correct order, is provided by a higher protocol in the suite.

An IP packet consists of an IP header and payload data. The header includes a 4-bit
protocol version number, a header length, a 16-bit total length field, an 8-bit protocol
identifier, a header checksum, control fields and the 32-bit source and destination IP
addresses.

The protocol field identifies which higher-level TCP/IP protocol is using the IP
layer to encapsulated its data. When a packet arrives at the destination for which it is
intended, IP extracts the encapsulated data and provides it to the designated higher-
level protocol module.

The Time-To-Live (TTL) control field is initialized to an arbitrary value by the
sender. The value of the field is decremented by one by every IP-aware network
device that the packet passes through in transit to its destination. When the value
reaches zero, the packet is considered unable to reach its destination. It is then dis-
carded and the sending IP layer is sent a notification of the event using the Internet
Control Message Protocol (ICMP). ICMP is one protocol used by network devices
for transmitting diagnostic messages.

IP addresses are logically partitioned into at least two parts, namely the network
identification (ID) and the host identification. Together the host identifier specifies
a particular network device on the network specified by the network identifier. The
network ID is often further decomposed to represent a hierarchy of networks (or
subnets).

Transmission Control Protocol (TCP) implements the transport layer of TCP/IP.
It is termed a “connection-oriented” protocol. Two hosts that wish to communicate
must establish a connection before application data can be transferred between them.
TCP provides reliability of transmission that is unavailable with IP.

For error detection, TCP computes and uses checksums for both the header and
payload data. When data is received, TCP sends an acknowledgement back to the
sender. If the sender does not receive an acknowledgement within a certain predeter-
mined time, the data is re-sent. TCP includes mechanisms for ensuring that data that
arrives out of sequence is properly re-sequenced.

TCP implements a flow control mechanism. This mechanism ensures that a fast
sender does not overwhelm a slow receiver with data. TCP employs IP for data trans-
mission but adds it own data unit abstraction, which is termed a segment.

114 J.V. HARRISON AND H. BERGHEL

Each segment contains 20 bytes of header information in addition to the IP header.
The TCP header contains a 16-bit source and destination port number fields. “Port
number,” in this context, represents a software port, not a hardware port. An IP ad-
dress and a port number taken together uniquely identify a service running on a host.
This identifying pair is known as a socket.

The header also includes a 32-bit sequence number. From the perspective of the re-
ceiver, the sequence number enables the receiving TCP to reconstruct the data stream
at the destination in the correct order even when segments are received out of se-
quence. The 32-bit acknowledgement field is used to convey back to the sender the
point in the data stream that has been successfully received.

Before any data can be sent between two hosts using TCP, a connection must be
established. One host, acting as the server, waits to receive connection requests from
clients. To request a connection, a client sends a TCP segment specifying its own port
number and the port that it wants to connect to. The “SYN” (synchronize sequence
numbers) flag is set, and the client’s initial data sequence number is specified. To
grant the connection, the server responds with a segment in which the header contains
its own initial data sequence number. To acknowledge receipt of the client’s data
sequence number the acknowledgement field contains that value plus one.

To complete the connection establishment protocol, the client acknowledges the
server’s data sequence number by sending back a segment with the ACK flag set and
the acknowledgement field containing the server’s data sequence number plus one.

Segments are only sent between client and server TCP transmits on behalf of an
application (in the application layer). No polling is performed by TCP to monitor
the status of the connection. If the communication medium fails, neither participant
will become aware of the failure until further data needs to be sent. However, in
all popular TCP/IP implementations a timeout implemented by the application will
usually terminate a connection after a long period of inactivity.

The User Datagram Protocol (UDP) is a second transport layer protocol of
TCP/IP. It adds little to the functionality of IP. Like IP, it is an unreliable, connec-
tionless protocol. No connection must be made between the sender and receiver prior
to data exchange. There is no inherent mechanism for ensuring that data sent is re-
ceived.

A unit of data sent using UDP is called a datagram. Like TCP, a UDP datagram is
addressed using source and destination port numbers. As stated above, port numbers
identify which protocol module sent, or is to receive, the data. Most protocols have
standard ports that make the identification trivial. The use of standard port numbers
makes it possible for clients, and attackers, to communicate with a server without
first having to establish which port to use.

Both UDP and TCP protocols use the port number to determine which application-
layer protocol should receive the data. The application layer is the top layer of the

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 115

TCP/IP stack. Applications that use the TCP/IP protocol for communication imple-
ment their own protocols above the transport layer. For example, e-mail applications
implement the Simple Mail Transport Protocol (SMTP), which itself uses the sockets
provided by the transport layer.

3. Offensive Techniques

In this section we present common categories of attacks in an organized structure
consistent with the TCP/IP protocol stack layers. A good source of general informa-
tion about the TCP/IP protocol stack layers, which we borrow from for this chapter,
can be found in both [18] and [44]. An understanding of this material will assist the
reader in understanding the attacks described. However, for those readers without a
preexisting understanding of TCP/IP protocol stack, we provide a basic description
of each layer necessary to enable some level of understanding the attack categories
that appear in the sections below.

3.1 Physical Layer

The physical layer includes those functions necessary to transmit information
along a physical telecommunication medium. It addresses the electrical and me-
chanical specifications as well as the functional and procedural characteristics, of the
environment involved. RS-232, Ethernet, FDDI, Token Ring, SLIP, PPP and DSL are
all physical layer protocols.

The deployment of wide-area communication networks (WANs) pose a significant
security challenge. They usually rely on large expanses of minimally protected cable
infrastructure. They are subject to surreptitious signal monitoring, jamming and dis-
rupting by physical means. The are also susceptible to interference at many points
in this infrastructure, which may include optical repeater nodes, switching nodes,
operation and management nodes, and the stretches of cable itself [38].

WANs typically carry large volumes of data, making even short duration outages
potentially very costly and disruptive. The impact of outages or congestion in wide
area networks is becoming increasingly serious as more organizations and individu-
als rely on their availability

3.1.1 Signal Disruption

While many types of network attacks require either a high degree of technical
expertise or significant financial or personnel resources to mount successfully, some

116 J.V. HARRISON AND H. BERGHEL

physical layer attacks may be accomplished with few resources, little expertise, and,
in some cases, a high degree of covertness.

Most of the nation’s network infrastructure is buried in the ground within a few
feet of the surface or mounted on utility towers. It is not difficult to dig up and severe
cables as illustrated by how often it occurs accidentally. One attacker with a backhoe
or several with ordinary tools available at a home and garden store could expose and
damage high bandwidth cabling.

The large geographic extent of many network backbones gives attackers a rel-
atively high probability of mounting such an attack covertly, until after the attack
succeeds, and then escaping immediately after the attack. Additional attacks could
then be mounted in other sections of cable that have been disconnected by the initial
attack to prolong the duration of the outage.

There are maps available, some on the Internet, that provide the general location of
high bandwidth cables that comprise the national telecommunication infrastructure.
Furthermore, many cable locations are well known in the industry, and there are
databases available to help construction contractors avoid accidentally digging them
up. It is not hard to imagine that a few individuals might be able to locate vulnerable
cables and choose attacks to maximize network disruption.

A disruption of several hours may represent little more than an inconvenience to
a casual e-mail. However, for organizations relying on network infrastructure avail-
ability for sending time sensitive information the one could envision the consequence
being much more serious. For example, the attacks might be timed to disrupt commu-
nications during events of geo-political significance. Furthermore, since the military
of most nations are relying increasingly on both public and private high-bandwidth
network infrastructures, an attack could also have military significance.

3.1.2 Packet Sniffing
A packet sniffer, sometimes referred to as a network monitor or network protocol

analyzer, can be used legitimately by a network or system administrator to monitor
network traffic across the communication medium. Using the information captured
by the packet sniffer an administrator can identify bottlenecks and maintain efficient
network data transmission. However, an attacker can deploy a packet sniffer for ma-
licious purposes.

In its most basic form a packet sniffer simply captures all of the packets of data
that pass through a given network interface. However, if the network interface card
is placed into “promiscuous mode,” the packet sniffer is also capable of capturing all
packets traversing the network regardless of the source or intended destination. One
level further toward stealth is the operation of the network card in “monitor” mode
which not only captures all packets traversing the network with which the card is
authenticated, but all networks whose signal is within range.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 117

An attacker can capture and analyze all of the network traffic using a covertly
installed packet sniffer. Subsequent analysis of the traffic may yield sensitive private
information, such as username, password and credit card information if packets were
unencrypted.

Detecting rogue packet sniffers on a network is non-trivial. One technique involves
monitoring the performance of a machine suspected of hosting a packet sniffer when
suddenly exposed to a network traffic burst. Another technique is to monitor domain
name queries issued by the suspect machine. Some sniffers issue numerous queries to
enable them to match IP addresses to hostnames. This allows the sniffer to present a
more user-friendly display. However, passive sniffers are usually very hard to detect
in both wired and wireless environments.

In a shared network (or “hub”) environment, all hosts are connected to the same
communication channel and compete with one another for bandwidth. In such an en-
vironment packets meant for one machine are, in fact, visible by all other machines.
Thus, any machine in such an environment placed in promiscuous mode will be able
to capture packets meant for other machines and can therefore listen to all the traffic
on the network.

A network environment in which the hosts are connected to a switch instead of a
hub is called a switched network. The switch maintains a table keeping track of each
computer’s physical address and delivers packets destined for a particular machine
to the port on which that machine is connected. The switch is an intelligent device
that forwards packets to the destined computer only and does not broadcast to all
the machines on the network. It can be viewed as constructing a set of two-node
networks (the computer and switch) with internal memory to store packets that are
to be forwarded between the two-node networks.

However, there is an additional benefit. Only traffic destined for a node on the
two-node network will be transmitted on the two-node network. Packet sniffing, in
its most simple form, cannot be directly performed in switched network. However,
there are other methods that an attacker can access packets in a switched network,
which are described below.

3.2 Data Link Layer

In this section we provide some brief comments about the data link layer before
describing attack scenarios. Some of this material was abstracted from [17] and [18].

The data link layer transforms the raw data provided by the physical layer into
basic organizational units. As such it deals with data frame formats, low-level error
detection, data flow control, and any additional considerations that would be required

118 J.V. HARRISON AND H. BERGHEL

to establish a reliable link between two hardware devices. It also mediates between
multiple devices on a network to specify who has control of the communication
medium at any point in time.

A computer connected to the Internet has two addresses. One is the physical ad-
dress, which is often referred to as a MAC (Media Access Control) address. The
MAC address uniquely identifies each node in a specific network and on many ma-
chines is stored on an embedded network card. Each network card has a unique
MAC address, which is used by the Ethernet protocol for addressing the frames that
are transmitted to and from a machine on a specific network. The second address is
the Internet Protocol (IP) address. The IP address uniquely determines a computer’s
connection to the Internet and is meaningful starting at the network layer, which is
one level above the link layer in the OSI model.

The Ethernet frame header includes the MAC address of the destination ma-
chine but not the IP address. IP addresses are mapped to the corresponding MAC
address. For efficiency, the mapping is usually retained in primary memory in a
table, which is referred to as the ARP (Address Resolution Protocol) cache. If no
entry is found for a particular IP address in the cache, the ARP module broad-
casts a “request” frame (ARP request) to all machines on the network. The machine
with that IP address responds to the source machine with its MAC address (“ARP
reply”). This MAC address is added to the source machine’s ARP cache, and is
then used by the source machine in all its communications with the destination ma-
chine.

3.2.1 ARP Spoofing

ARP is used to obtain the MAC address of a destination machine when a source
machine has a frame to send but only possesses the machine’s IP address. ARP is a
stateless protocol. An ARP reply can be sent, and processed by the destination, even
if a corresponding ARP request was not issued.

An attacker can intercept the traffic originating from a machine by performing
“ARP spoofing.” In this scenario, the attacker issues an ARP reply to the network
stating that the gateway of the network is the attacker’s machine. The ARP cache
of machines that receive this ARP reply will now have an incorrect entry for the
gateway in their cache. Their cache is said to be “poisoned.”

All the traffic from machines with poisoned caches destined for the gateway will
pass through the attacker’s machine. Alternatively, a host’s ARP cache can be poi-
soned by setting the gateway’s MAC address in the victim host to the broadcast MAC
address. In this case also all of the hosts traffic will be sent to the attacker (and all
other machines).

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 119

3.2.2 MAC Flooding
Switches maintain a translation table that maps various MAC addresses to the

physical ports present on the switch. Using this table, a switch can route packets
from one host to another without having to route communication beyond the switch.
So long as the switch translation table contains all of the relevant MAC addresses, the
switch will be effective. However, if a MAC address is referenced that is not included
in the translation table, the switch has no alternative but to direct the traffic beyond
the switch to the LAN to which the switch is connected (this is called the “fail open”
mode). This is the genesis of the MAC Flooding (aka “switch flooding”) exploit.

MAC flooding exploits the memory limitations of switches. The attacker inun-
dates the switch with bogus MAC addresses until the switch’s memory resources are
completely consumed. At this point all legitimate traffic to MACs that were in the
original translation table will be redirected to the LAN. This turns the switch into
a hub, and broadcasts all traffic that should have been internal to the switch over
the LAN where it is visible to all the machines on the network, which makes the
switched traffic vulnerable to packet sniffing.

3.3 Network Layer

The network layer handles delivery of packets between devices that may be con-
nected to different networks and separated by many others. The network layer is
responsible for logical addressing, namely managing the mapping between IP ad-
dresses and machines on a worldwide basis. It is also responsible for ensuring the
packets sent to machines on different networks navigate through the various networks
successfully and arrive at their destination. Network appliances such as routers and
gateways operate at the network layer.

3.3.1 Fragmentation Attacks
The network layer, which is based on Internet Protocol (IP), handles movement of

packets around and between networks (via routing). All networks have a maximum
packet size, based on the characteristics of the underlying link layer. This is called
the network’s maximum transmission unit (MTU). To illustrate, the typical MTU for
Ethernet is 1500 bytes.

Not all network technologies have the same size MTU. When a packet arrives at
a network that has a MTU that is smaller than the size of packet, the packet must be
partitioned into fragments. The fragments are then transmitted over the network. The
destination machine’s network layer is responsible for reassembly of the fragments to
reconstruct the original packet. In order for this reassembly to take place seamlessly,
several pieces of information must be included in the fragment header: fragment

120 J.V. HARRISON AND H. BERGHEL

ID, fragment offset, length of data payload, and an indicator whether the current
fragment is the last fragment in the chain. Packet fragmentation attacks frequently
involve manipulation of these key fields. Throughout this discussion it should be
remembered that only the first fragment of a fragmented packet has the protocol
header!

One method an attacker can use to exploit these vulnerabilities is to manipulate
the value of the “fragment offset” field. This field designates where the data arriving
in a packet fragment must be placed in the memory area where the entire packet is
being reconstructed. One exploit involves setting the value of the fragment offset on a
fragment so low that instead of appending the fragment to an earlier one, IP actually
overwrites the data, and perhaps part of the packet’s header, in the earlier fragment.
Using this technique, an attacker can transmit a malicious packet that might other-
wise be detected on arrival were it not decomposed into a series of smaller packets
each containing a fragment. This is the technique that was used in the “Teardrop”
exploit as is illustrated in the following two TCPDump records:

hacker.net 22 > target.org 33: UDP (frag 123:64@0++)

hacker.net > target.org(frag 123:20@24)

This is read in the following way. The hacker machine sends two UDP packets
to the target machine. The fragment ID is “123” in both cases. The first packet says
“the following packet contains 64 bytes starting with offset 0.” The second packet
says, “the following packet contains 24 bytes starting at offset 20.” As reassembly
takes place in order, the second UDP packet overwrites bytes 21–45 in the original
packet. This technique is commonly used to camouflage packet signatures that would
normally be flagged by static firewalls and older intrusion detection systems that
monitor individual packets but not the entire fragmentation chain.

3.3.2 Smurf Attack

The Internet Control Message Protocol (ICMP) augments the IP protocol. ICMP is
used to handle errors and exchange control messages and can be used to determine if
a machine on the Internet is responding to network requests. For example, one type of
ICMP packet is a “echo request.” If a machine receives that packet, that machine will
respond with an ICMP “echo reply” packet. This basic message exchange is used to
convey status and error information including notification of network congestion and
of other network transport problems. ICMP can also be a valuable tool in diagnosing
host or network problems and is the basis for the “Ping” network diagnostic utility.

ICMP packets are encapsulated inside of IP datagrams. There are 15 different
types of ICMP messages, including “ICMP_ECHO REPLY” (the response) and

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 121

“ICMP_ECHO” (the query). The normal course of action is for an “ICMP_ECHO”
to elicit a “ICMP_ECHOREPLY” response from a listening server.

On IP networks, a packet can be directed to an individual machine or broadcast
to all machines on the network. When a packet is sent to an IP broadcast address
from a machine on the local network, that packet is delivered to all machines on that
network. An unprotected network may allow a packet to be sent to the IP broad-
cast address from a machine outside of the local network. If so, the packet will be
broadcast to all machines on the target network.

In the “smurf” attack [11], attackers use ICMP echo request packets directed to
IP broadcast addresses from remote locations to generate an overwhelming number
of ICMP echo reply packets. The network is overwhelmed by the sheer volume of
traffic, which interferes with legitimate traffic. The machines generating legitimate
traffic are denied access to the network, which is why this attack is considered one
of a class called “denial-of-service” attacks.

When the attackers create these packets, they do not use the IP address of their own
machine as the source address. Instead, they create crafted packets with a spoofed
(false) source address of the attacker’s intended victim. When all the machines on
the network respond to the ICMP echo requests, they send replies to the victim’s
machine. The victim is subjected to congestion that could potentially make the net-
work unusable. Attackers have developed automated tools that send these attacks to
multiple networks at the same time, causing all of the machines on these networks to
direct their responses to the same victim.

3.3.3 Covert Data Channels

A covert channel is a communication mechanism in which information can pass,
but which is not ordinarily used for information exchange and hence is difficult to
detect and deter using typical methods. Detailed technical information about one
infamous covert channel attack can be found in [15].

Ping has a standard packet format recognized by every IP-speaking device and
is in widespread use for network management, testing, and performance analysis.
Firewalls are often configured to assume ping traffic is benign and then allow it to
pass to the protected network. However, Ping traffic can open up covert channels
through the networks in which the traffic is permitted.

ICMP_ECHO packets also have the option to include a data section. This data
section is used when the record route option is specified, or, more commonly, to
store timing information to determine packet round-trip times. However, there is
no check made as to the content of the data. This transmitted data section serves
as the covert channel. Encoded messages, malicious software and/or commands to
preexisting malicious software can reside in the data section.

122 J.V. HARRISON AND H. BERGHEL

The infamous “Loki” tool exploits the ICMP data section covert channel. Note that
covert channel may be enabled in many other protocols besides ICMP. Any fields of
any protocol message that is not critical to ensure accurate could be candidates for
a covert channel. In the case of Loki, the options field of the ICMP packet usually
contains encrypted data that is reassembled by the compromised target computer.

3.4 Transport Layer

The transport layer is responsible for the reliable delivery of an entire message
from a source process to a destination process. This message may be comprised of
a multiple IP packets. Although the IP network layer handles each packet indepen-
dently, without recognizing an relationship between them, the transport layer ensures
that the entire message arrives at the destination intact and is reassembled in the cor-
rect order.

The transport layer handles acknowledgements, error control and flow control,
packet sequencing, multiplexing, and any other process-to-process communication
required. TCP is the transport layer of the TCP/IP protocol. Many applications rely
on the connection-oriented services provided by TCP. Examples of TCP applications
that are staples of modern Internetworking include Hypertext Transport Protocol
(HTTP), File Transport Protocol (FTP), Secure Shell (SSH), Internet Message Ac-
cess Protocol (IMAP), Simple Network Management Protocol (SNMP), Post Office
Protocol v3 (POP3), Finger, and Telnet.

When applications that employ these protocols are launched, the TCP/IP software
on the local device must establish a connection with the TCP software on the des-
tination device. The 3-way handshake takes place between the endpoint computers.
Assume that device A is the initiator of the communication and device B is the target
of the initiator’s connection process.

(1) Device A sends its TCP sequence number and maximum segment size to De-
vice B. This information is in the form of a TCP/IP “SYN” packet, which is a
packet with the SYN bit set.

(2) Device B responds by sending its sequence number and maximum segment
size to Device A. This information is in the form of a “SYN/ACK” packet,
which is a TCP/IP packet with the SYN and ACK bits set.

(3) Device A acknowledges receipt of the sequence number and segment size
information. This information is in the form of a TCP “ACK” packet, which
is a TCP/IP packet with the ACK bit set.

The connection between the devices is then open and data can be exchanged between
them. Although this appears quite simple, an attacker can manipulate this handshak-
ing process to overwhelm and compromise a TCP/IP enabled device.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 123

3.4.1 TCP/IP Spoofing
IP Spoofing is a method that an attacker can employ to obtain a disguise. With

IP spoofing, an attacker gains unauthorized access to a computer or a network by
making it appear that malicious traffic has originated from a trusted host. Details of
this attack type can be found in [3].

The characteristics of the IP protocol that enable IP spoofing include its connec-
tionless model, where each datagram is sent independent of all others. Furthermore,
there is no inherent, built-in mechanism in IP to ensure that a packet is properly
delivered to the destination. An attacker can use one of several freely available soft-
ware tools to easily modify a packet’s “source address” field, hence masking its true
originating IP address.

Like an IP datagram header, the TCP packet header can also be manipulated. The
source and destination port number for a communication session, which are found in
the TCP header, determine the network applications performing the communication.

The TCP sequence and acknowledgement numbers are also found in the TCP
header. The data contained in these fields is intended to ensure packet delivery by
determining whether or not a packet needs to be resent. The sequence number is the
number of the first byte in the current packet, which is associated with a specific
data stream. The acknowledgement number contains the value of the next expected
sequence number in the stream sent by the other communicating party. The sequence
and acknowledgement numbers are used by the communicating parties to ensure that
all legitimate packets are received. Reliable delivery of packets is facilitated by the
TCP layer.

An attacker can alter a source address by manipulating an IP header, hence mask-
ing a packets true source. A related attack, which is specific to TCP, is sequence
number prediction. This attack can lead to session hijacking or host impersonating
and requires the use of spoofing techniques. Several attack subtypes are possible
using these methods, which are outlined in [45].

Non-Blind (TCP) Spoofing occurs when the attacker’s machine is on the same sub-
net as the victim. The sequence and acknowledgement numbers can be obtained by
sniffing, eliminating the potential difficulty of calculating them accurately. This per-
mits the attacker to attempt a hijack of the TCP session. The attacker corrupts the
data stream of an established connection, then re-establishes the connection but with
the attackers machine in place of one of the authorized parties. The reestablishment
is enabled because the attackers machine uses the correct sequence and acknowl-
edgement numbers. Using this technique, an attacker can circumvent authentication
techniques employed to establish the connection.

Blind (TCP) Spoofing is a more complex attack because the sequence and ac-
knowledgement numbers are not immediately assessable. The attacker must transmit
packets to the target machine in order to sample sequence numbers. By examining

124 J.V. HARRISON AND H. BERGHEL

the sequence numbers, the attacker must then attempt to guess how the victim TCP
layer generates sequence numbers. This is a more difficult task now that most TCP
layer software implement algorithms for random sequence number generation. How-
ever, if the sequence numbers are compromised, packets can be sent to the victim(s).

Man In the Middle (MITM) attacks employ spoofing techniques. In a MITM at-
tack, an attacker intercepts a legitimate communication between two communicating
parties. The attacker then controls the flow of communication and can eliminate or
alter the information sent by one of the original participants without the knowledge
of either the original sender or the recipient.

A Denial of Service (DOS) Attack can be made more effective using IP Spoofing.
An attacker will spoof source IP addresses in the offending traffic to make tracing
and stopping the attack as difficult as possible. In some cases multiple compromised
hosts participate in the attack, and all send spoofed traffic, complicating the task of
quickly blocking the offending traffic. A DOS attack enabled by IP Spoofing is con-
sidered difficult to defend against because the enabling vulnerability is inherent to
the design of the TCP/IP suite. Packet filtering by firewalls, encryption and authen-
tication techniques, which are described below, can be employed to reduce the risk
and impact of TCP/IP Spoofing attacks.

3.4.2 SYN Flooding
Assume a client process is attempting to perform the aforementioned handshaking

process with a server. One point where an attacker can interfere with this process is
where the server system has sent an acknowledgment (SYN/ACK) back to client but
has not yet received the ACK message. This incomplete handshaking process results
in what is referred to as a “half-open” or “partially open” connection.

The server operating system has built in its primary memory a data structure de-
scribing all pending connections. This data structure is of finite size, and it can be
made to overflow by intentionally creating too many partially open connections.

The attacking system sends SYN messages to the victim server system. These
messages appear to be legitimate connection attempts but in fact represent attempts
to connect by a client system that is unable to respond to the SYN-ACK messages,
or simply does not exist. In either case, the final ACK message will never be sent to
the victim server system.

The data structure that stores connection information, and which records state
about partially open connections, will eventually deplete. At that point the server
system will be unable to accept any new incoming connections until memory is re-
claimed and made available to record state about new connection attempts.

There is a timer associated with a pending connection, which “times out” if the
connection does not complete. Therefore, half-open connections forced by the at-
tacker will eventually expire and the server under attack will recover. However, the

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 125

attacking system can simply continue sending IP-spoofed packets requesting new
connections faster than the victim system can expire the pending connections.

The attack does not affect existing incoming connections nor does it affect the
ability to originate outgoing network connections. However, in some cases, the vic-
tim of such an attack will have difficulty in accepting any new incoming network
connection. This results in legitimate connections being refused by the server, hence
their services become unavailable. Depending on the implementation, some servers
may simply crash.

The location of the attacking system is concealed because the source addresses in
the SYN packets are spoofed. When the packet arrives at the victim server system,
there is no way to determine its source because packet switched networks forward
packets based on destination address.

Several attempts have been proposed to defend against SYN floods. One reduces
the memory allocated to record an attempted TCP connection, e.g., 16 bytes. This
forces the attacker to send much more SYN traffic to exhaust the victim operating
system’s memory.

Another technique an attacked host can implement is to allocate no space when
a SYN packet is received. Instead the attacked host returns a SYN/ACK with a se-
quence number that is an encoding of information appearing in the SYN packet. If an
ACK packet arrives, representing a non-malicious attempt to complete the handshak-
ing process, the host receiving the packet can extract information about the original
SYN and only then allocation the data structure necessary to maintain the connec-
tion.

SYN flooding, and how it is enabled by TCP/IP Spoofing, is described in detail in
[12].

3.4.3 Port Scanning

An attacker can easily compromise a host system if an attacker can gain access.
Attackers gain access by scanning devices on the network for vulnerabilities, then
exploiting them. “Port scanning” [25] is the term used for the manual or automated
process of port reconnaissance.

Ports are a transport layer concept. A port number functionally determines a
process on the host that was assigned the port number by the operating system. An IP
address and port number functionally determine the process and the network device
(via its IP address) that is hosting the process.

An attacker interested in a particular network may attempt to obtain information
about that network and scan for vulnerabilities. Some attackers will attempt to scan
large ranges of IP address searching for machines to exploit. Port scanners are use-
ful defense tools in that they can be used to identify vulnerable systems within an

126 J.V. HARRISON AND H. BERGHEL

organization’s network architecture. There are port scanners available for download
at no charge. One of the most popular and effective is called “Network Mapper” or
“nmap” [33], which will provide a detailed listing of all open ports.

3.5 Attacks Against the Operating System

This chapter focuses on attacks against the network protocol layers. In modern
computing systems the software that implements the network protocol layers is intri-
cately coupled with the computer’s operating system. Attacks against the operating
system directly affect the implementation of the network protocol layers. In this
section we describe attacks against the operating system that are devastating to the
operation of the network protocol layers.

3.5.1 Rootkits

Rootkits [40] are an especially dangerous form of malicious software. At present,
rootkits can be partitioned into two classes, namely user-mode rootkits and kernel-
mode rootkits. User-mode rootkits replace normal operating system components,
including the programs and commands that users and administrators rely on, with
malicious versions that give the attacker remote access to the machine and mask the
attacker’s presence with fraudulent components that appear normal. The information
returned to the user of the malicious versions conceals the rootkits presence.

Kernel-mode rootkits compromise the operating system’s kernel. The kernel oper-
ating system layer resides between user programs and the hardware of the machine,
controlling which programs execute, allocating memory, interacting with the hard
drive and accessing network hardware. By compromising the kernel, attackers can
use the system to perform malicious actions such as hiding files, processes and net-
work activities. The attacker creates an artificial reality where the operating system
appears intact to, and under the control of, system administrators and users. How-
ever, in reality the machine is completely compromised and under the full control of
the attacker.

Note that attackers do not use the use the root kit to gain access. The attacker
must have previously gained access to the victim’s computer by other means and
subsequently installed the rootkit. Alternatively, the attacker must have tricked the
victim into installing the rootkit himself. A common attack method is to trick the
user into installing a backdoor allowing remote access, perhaps with a malicious
e-mail attachment. Once access is obtained, the attacker can install the rootkit.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 127

3.5.2 Shell Shoveling and Relays

One objective of an attacker is to possess the capability to remotely execute arbi-
trary commands on a victim’s computer. “Shell shoveling” is a common term used to
refer to the acquisition of this capability. The following example illustrates one way
shell shoveling could be configured.

Assume that an attacker has been able to install the popular “netcat” utility on the
victim’s machine, or that the victim had already installed it. The attacker could then
use netcat to monitor TCP port 80, which is usually open to allow HTTP traffic, to
accept remote commands from the attacker. These commands would then be exe-
cuted on the victim’s machine, perhaps by being piped through a command shell.
Any output resulting from command execution could be directed out of the victim’s
machine using port 25, which is usually open to allow e-mail traffic. The result of
the process above is that a remote command shell is “shoveled” to the attacker.

An example command that could be executed on a victim’s Windows machine
(assuming netcat was installed) could appear similar to:

“nc attacker.com 80 | cmd.exe | nc attacker.com 25”

If the intended victim was a Unix machine, and assuming that popular “Xterm”
utility and TCP traffic on port 6000 was unrestricted, a command similar to the one
below could be executed:

“xterm -display attacker.com:0.0 &”

3.5.3 Authentication Mechanism Attack

Authentication mechanisms are a high profile target of attackers. Once compro-
mised, the attacker can perform all system functions permitted by the authorized user
without experiencing interference by other security mechanisms. Once the breach
has occurred, the attacker can cause havoc with impunity.

One of the weakest types, but most widely deployed, authentication mechanisms
is password systems. The user presents a login, which is usually well known or eas-
ily derived, followed by the user’s secret password. The secrecy of the password is
fundamental to the effectiveness of the authentication mechanism, which makes it of
prime interest to an attacker.

There are several forms of password cracking [40] attacks. In one version, an at-
tacker executes a program remotely that issues a series of login attempts in real time.
This type of attack is easily repelled by systems that freeze accounts either perma-
nently or temporarily after a series of incorrect password entry attempts. However, in
a sense the attacker is still successful in causing the system to lock out a legitimate

128 J.V. HARRISON AND H. BERGHEL

user. Alternatively, the system under attack can simply respond slowly to password
entry during the login process, which will dramatically increase the time necessary
to attempt a long list of possible passwords.

A more effective password cracking technique requires that the attacker first obtain
the encrypted password file from a victim’s machine. Most operating systems store
a hashed form of the passwords on the local hard disk. In the case of Windows
2000/XP, this information is included in the SAM file. Once the password file is
stolen, the attacker can present the file to a password cracking program, which has
access to a lexicon, usually already in hashed forms (such as MD5 or SHA1).

The password-cracking tool attempts to decipher the passwords by comparing
each entry with the encrypted value. If the encrypted values match, the hacker has
identified a password. If the two values do not match, the tool continues through
the entire dictionary, and can even attempt every combination of characters, includes
numbers and special symbols. The default is a “brute force” attack that compares
the hashed value of every combination of characters from the selected character set
against the records in the password file. The limiting factor in how fast passwords
can be cracked is how quickly guesses can be hashed and compared. Naturally, more
powerful systems can process and test more potential passwords in less time.

A common defense against password cracking attacks is strongly enforced pass-
word policy. It may require users to devise passwords that are difficult to guess.
A common password restriction is that they be at least eight characters long and in-
clude alphanumeric and special characters and not include dictionary terms. Since
the complexity of a password may be expressed as R**L where the radix, R, is the
size of the symbol set and L is the length, in most practical situations increasing L

adds more security than increasing R.
For additional security, several automated tools are available that prevent users

from setting their passwords to easy-to-guess values or dictionary terms or to reuse
passwords without a waiting period. Unfortunately, forcing users to create and mem-
orize lengthy complex passwords is problematic based on the inherent limitations on
a person’s memory. Many users do not change their passwords frequently or record
them in secure places.

3.5.4 Buffer Overflow

A buffer is a contiguous area of memory occurring within the memory space allo-
cated by the operating system to a running process. Buffers are created by computer
programs. The programmer’s intended use of the buffer is to store data of an expected
size and format.

The run-time system of certain programming language environments do not per-
form bounds checking, or type checking, on the buffer automatically. The program-

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 129

mer is expected to include program instructions to perform the check when nec-
essary. In many software components these checks do not appear. Consequently, a
buffer can be made to overflow in the same way as a bucket of water can be made to
overflow. The technique of deliberately overflowing a buffer to compromise a soft-
ware system is known as a buffer overflow attack.

In its simplest form, a buffer may be thought of as in-stream memory allocated
by a process or imminent short-term use. In the normal operation of the program,
the next instruction after the buffer will be either the next executable instruction or a
pointer thereto. If a buffer overflows, it will necessarily obliterate that instruction or
pointer—hence the vulnerability [5].

One common approach to buffer overflows involves filling the top part of the buffer
with “NO OP” instructions, which do precisely nothing, followed by some malicious
code. The “spill over” will overwrite the intended next executable instruction with a
pointer back to the top part of the buffer. The address of the pointer does not have to
be exact, because the NO OP instructions will increment the memory address register
until the first line of malicious code is reached.

This buffer overflow strategy has been in wide use for many years and relies upon
the fact that there’s a lot of poorly constructed code deployed that doesn’t use bounds
checking for buffer input control. It is important to note that buffer overflow problems
are not restricted to operating system software. Any application layer software could
potentially introduce a buffer overflow vulnerability.

3.6 Attacks Against the User

The user is considered by some to be the actual “top layer” of the TCP/IP network
protocol stack. A naïve user can unknowingly circumvent any security feature built
into the network protocol layer software. The infamous attacker and social engineer,
Kevin Mitnick, believes that human factors are the weakest link in computer security
[29]. Consequently, we consider direct attacks on the user as an indirect attack vector
against the network layers. This section describes attacks against the user.

3.6.1 Attacks on Privacy and Anonymity

Attackers that wish to compromise information systems to perpetrate financial
fraud often face technical obstacles. Naturally, the goal of network and system archi-
tects is to present as many obstacles as possible. However, a naïve user, as one of the
“softest” targets, can be attacked to obtain sensitive information that will make other
attack vectors unnecessary. This subsection addresses methods an attacker can use to
acquire the identification of victim and the sensitive information itself.

130 J.V. HARRISON AND H. BERGHEL

3.6.1.1 Malicious Cookies. A cookie [4,26] is a piece of information gen-
erated by a Web server and stored in the client’s computer, in most cases without
client intervention. They are intended to store state information regarding the in-
teraction between a client and web server, often referred to as a session. Session
information can include sensitive information about individuals such as account
numbers, purchase information, user preferences and the history of HTML pages
viewed.

When used as intended, cookies are useful and benign. The HTTP protocol pro-
vides no means to retain the state of the interaction. Coded session information is
extracted from the cookie associated with the domain, avoiding unnecessary data
entry by the user.

Web servers automatically gain access to cookies that reference the web server’s
domain whenever the user establishes a connection. Faults in some browsers allowed
cookies to be stolen revealing the session information. An attacker could then use the
stolen session information in his own interaction with the web server that the victim
had been accessing. This is referred to as session cloning. The attacker could use the
cloned session to fraudulently make purchases, transfer funds, change shipping and
billing addresses as if he was the authorized user.

A less severe form of cookie abuse can attack a victim’s privacy. A third-party,
other than the client or the web server explicitly accessed by the client, can obtain
the cookies, and hence the sensitive information, if permitted by the operator of the
web server. This can occur, without the permission of the user, when a HTML (web)
page explicitly referenced by the client reference a web page served by the third
party’s web server.

The most common scenario occurs when a Internet advertising firm who contracts
to provide banners on others web sites exploits this opportunity to collect user cook-
ies from many web sites. It can analyze these collected cookies to track a victim’s
web page access across multiple web sites. The web site access data, and any sensi-
tive information extracted from the cookie, can be used to generate profiles of user
behavior. This entire process will usually be unbeknownst to the user.

3.6.1.2 Web Bugs. A web bug [8] is an HTML image tag occurring within
a web page that results in malicious actions in addition to simply downloading and
rendering an image. The image download request can include encoded personal in-
formation. This encoded information can identify a user, a user’s email address or
other sensitive data.

Web bugs are purposely deployed to covertly collect data that a user may wish to
remain private. Advertising companies and large corporations have used web bugs to
covertly collect marketing data. In many cases, the graphic specified to be down-
loaded is comprised of only one pixel, which would make it virtually invisible,

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 131

especially if the color matches that of the background of the web page being ren-
dered by the browser.

Some examples of the type of information that can be harvested using web bugs
are:

• The IP address of the computer the victim is using to view the document.

• The date and time the page was viewed.

• The browser type and monitor resolution.

• The browser type, which can be used to infer the operating system type.

• The value of a cookie from the domain providing the image if previously set.

A more intrusive use of web bugs is including them within HTML e-mail. When
the e-mail is viewed and the HTML within the e-mail message is rendered, the image
request, containing personal information, is provided to the attacker. This technique
allows an attacker, for example a spammer, to automatically validate that an e-mail
address the spammer has used is valid and in use by the victim.

This attack can be enabled by any software application utilized by the victim that
retrieves images from remote locations for rendering. Office productivity software
packages, which are now Internet-enabled, are a current target for those experi-
menting with web bugs. An example motivation would be to determine who read
a document, which might be relevant if the document was not in the public domain
and it was questioned who released the document.

Most information available on the World Wide Web (WWW) is represented in a
general, uniform format called Hypertext Markup Language (HTML) and is commu-
nicated upon request using a standard protocol called Hypertext Transport Protocol
(HTTP). The software system that provides HTML documents to a client’s web
browser via the Internet is termed a web server.

3.6.2 Social Engineering
To launch a social engineering attack [27], an attacker uses social interaction

to obtain or compromise information about an organization or its computer sys-
tems. An attacker may seem unassuming and respectable, possibly claiming to be
a new employee, repair person, or researcher and even offering credentials to sup-
port that identity. However, by aggregating information obtained in each interaction,
the attacker may be able to piece together enough information to infiltrate an orga-
nization’s network. If an attacker is not able to gather enough information from one
source, he or she may contact another source within the same organization and utilize
the information from the first source to gain credibility.

Attackers with both technical and social engineering skills have been especially
effective against large organizations that are believed to have sufficient security sys-

132 J.V. HARRISON AND H. BERGHEL

tems in place. The attacker will attempt to identify vulnerabilities in both computer
and network systems, but will also target physical security and good natured, but
naïve, employees. Ref. [29] describes these concepts in detail.

3.6.3 Phishing
The term “phishing” [24] is used to describe a class of attack made against a

computer user. The technique used to gain personal and financial information usually
for purposes of identity theft. It involves the use of fraudulent e-mail messages and
corporate web pages that appear to come from legitimate businesses.

Authentic-looking messages are designed to fool recipients into divulging per-
sonal data such as account numbers and passwords, one’s mother’s maiden name,
credit card numbers and Social Security numbers. When users respond with the re-
quested information, attackers can use it to gain access to the accounts. Phishing can
be viewed as an advanced, automated form of social engineering attack.

Despite the passage of the federal Identity Theft and Assumption Deterrence Act
of 1998, phishing attacks are increasing in number and effectiveness. The creation of
authentic-looking messages is trivial as the attacker can easily reproduce all of the
text and graphics necessary to create the fraudulent messages from the legitimate web
sites. A common scam is to send e-mail that purports to originate from a legitimate
organization with whom the user has an existing business relationship. The e-mail
insists that an authentication process be performed. Part of this process will require
that the victim provide login credentials. Once the victim has unknowingly provided
the credentials to the attacker, the attacker that uses these credentials to perpetrate a
fraud.

3.6.4 E-mail Spoofing
Spoofing is the deliberate attempt to mislead or defraud someone by misrepre-

senting one’s true identity. There are several forms of spoofing. Each form can be
distinguished by the type of communication employed to mislead the victim. In pre-
vious sections of this chapter we addressed spoofing at the data link layer (ARP
spoofing) and at the network layer (IP spoofing). In this section we address e-mail
spoofing.

E-mail spoofing [13] may occur in different forms, but all have a similar result: a
user receives email that appears to have originated from one source when it actually
was sent from another source. Email spoofing is often an attempt to deceive a victim
into making a statement that may damage his or her reputation, or into releasing
sensitive information. It is also commonly used as the precursor for a phishing attack.

Some typical examples of spoofed email are those claiming to be from a system
administrator requesting users to change their passwords to a specified string and

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 133

threatening to suspend their account if they do not comply or email purporting to be
from a person in authority requesting a victim to provide sensitive information.

E-mail spoofing is technically quite easy to perform because common e-mail
protocols, such as Simple Mail Transfer Protocol (SMTP), lack a source address
authentication mechanism. This allows e-mail to be sent that contains any source
e-mail address desired by the attacker.

3.6.5 Keystroke Loggers

A keystroke logger records every keystroke a user types on a specific computer’s
keyboard. As a hardware device, a keystroke logger is a small device that interfaces
between the keyboard and computer. Since most workstation keyboards connect to
the rear of the computer, the device can often reside covertly on the victim’s ma-
chine. The keystroke logger captures all keystroke performed by the victim. Unless
the keystroke logger has a covert data transfer utility, the device must be physically
removed to retrieve the captured keystrokes.

A keystroke logger program does not require hardware to be installed to function.
An attacker with physical access to the computer can install it. The software will
covertly record the keystrokes either for later removal from the victim’s computer
using a storage device, or alternatively, it can transmit the recorded keystrokes to the
attacker over the Internet.

Some keystroke loggers do not require physical access to the victim’s machine
for installation if the machine is connected to a network. The logger can be installed
remotely by at attacker, or can fool the victim into installing it. The software will
then transmit the recorded keystrokes to the attacker over the Internet.

3.6.6 Spyware

Spyware [43] is a label given to software that executes on a victim’s computer and
covertly transmits data collected about the user to another party. In more aggressive
situations, the software is installed without the victim’s permission or knowledge.
In less aggressive situations, a victim will be notified when the spyware is to be
installed, and is even given an opportunity to block the installation. However, in
many of these cases the notification is often very obscure, for example, it appears as
complicated legal language embedded within a long privacy policy. In other cases,
the spyware software is coupled with other software that the victim wishes to install.
When the victim installs the desired software, the spyware is also covertly installed.

Spyware, like legitimate software, executes with the same permissions as the user
who installed it. Therefore, the spyware possesses the capability of performing a
wide range of malicious actions. Some types of spyware, such as adware, browser

134 J.V. HARRISON AND H. BERGHEL

helper objects and dialers, as well as malicious activity they perform, are described
below.

Spyware can track the history of web sites visited by the victim and then transmit
this information to the attacker. Spyware can also collect demographic information
about the user, such as age, geographic location, and gender. There is nothing to stop
spyware from collecting, and then reporting, names, social security numbers, credit
card numbers, and other data that may reside on a computer or had been entered into
a web form.

Spyware is sometimes deployed in conjunction with useful software, often called
freeware, that the user purposely installs but does not have to pay for. In this scenario
the freeware vendor partners with an on-line advertising firm that provides the spy-
ware to create a revenue model. The vendor of the freeware distributes the spyware
along with the freeware. When the user installs the freeware the spyware is also in-
stalled. When the freeware is executed, the spyware, which is concurrently executed,
will download banners advertisements from a web site specified by the attacker that
are then displayed as part of the user interface of the freeware. The freeware vendor
is compensated for its part in this process.

In some cases the spyware will simply use the freeware installation as a means
to become installed. It will then display the banner advertisements autonomously,
i.e., without requiring the execution of the freeware. Spyware that acts in the manner
described above is sometimes referred to as adware.

A variant form of spyware is termed a Browser Helper Object (BHO). A BHO
is spyware that parasitically couples itself to a common web browser, although it
requires an unknowing user’s permission to do so. It employs a code extension mech-
anism inherent in the browser to allow the BHO to execute when the browser is
executed. Although the BHO can offer, and then deliver, functionality requested by
the user, the BHO can implement additional, malicious, functionality.

There are many malicious actions that may be performed by the BHO. It may
monitor the websites visited by the victim and transmit the data to the attacker. It may
intercept requests for specific web pages and replace them with those specified by
the attacker, which is an attack known as browser hijacking. The BHO may replace
the result of a web search with that specified by the attacker.

A dialer is spyware variant that covertly changes the dial-up connection setting of
communication software. When the victim uses his modem to connect to his local
Internet service provider, the communication software instead calls a high cost-per-
minute service telephone number such as a long distance or other toll number.

One of the most insidious forms of spyware is presented to the victim as a spyware
removal utility. When the victim installs the malicious “spyware removal” utility, the
software exhibits precisely the same behavior that the victim has intended to prevent.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 135

3.7 Large Scale Attack Techniques

There are many methods an attacker can use to attack a computer system. How-
ever, some techniques are effective for launching an attack on a large number of
systems. In certain cases, the large number of compromised systems can be forcibly
converted into an army of attackers and directed to launch a particularly debilitat-
ing attack on one or more additional systems. These techniques are discussed in this
section because they may attack or affect multiple layers of the TCP/IP stack.

3.7.1 Virus

A virus [10] is software that attaches itself to a seemingly innocuous file, either
executable or non-executable, with the deliberate intention of replicating itself. Most
viruses perform other, often malicious, functions. A virus requires human action to
propagate, such as opening an infected e-mail or executing an infected software ap-
plication.

3.7.1.1 Boot Virus. Boot viruses place themselves in the disk sector whose
code the machine will automatically execute during the boot process. When an in-
fected machine boots, the virus loads and runs. After a boot virus finishes loading,
it will usually load the original boot code, which it had previously moved to another
location, to ensure the machine appears to boot normally.

3.7.1.2 File Virus. File viruses attach to files containing executable or inter-
pretable code. When the infected code is executed the virus code executes. Usually
the virus code is added in such a way that it executes first. After the virus code
has finished loading and executing, it will normally load and execute the original
program it has infected, or call the function it intercepted, so as to not arouse the
victim’s suspicion.

3.7.1.3 Macro Virus. Macro viruses are a specialization of file virus. They
copy their malicious macros to templates and/or other application document files,
such as those modified by an office productivity software suite. Early versions would
place themselves in the macro code that was the first to execute when infected tem-
plates or documents were opened. However other macros require the user to invoke
an application command, which runs the malicious macro.

3.7.1.4 Script Virus. Script viruses confuse the victim because they do not
appear to be executable files. Standalone Visual Basic Script (VBS) and JavaScript
(JS) programs have suffixes that a naïve user does not associate with an executable

136 J.V. HARRISON AND H. BERGHEL

program. Consequently, script viruses became a popular virus type for attackers
launching their attack using mass e-mailing.

3.7.1.5 Image Virus. An image virus attaches itself to compressed image
files, e.g., JPEG. Merely viewing the image with a vulnerable web browser could in-
voke a buffer overflow and activate the virus. The infected image could be distributed
via e-mail. It could also be distributed via its presence on a web site.

3.7.1.6 Companion Virus. Companion viruses do not directly infect boot
sectors or executables. Instead, a companion virus simply assumes the same name
as a legitimate program but with an extension that will cause an operating system to
give it higher precedence for execution. When the file is involved at the command
line without the extension, the victim will expect the legitimate program to execute
but instead the companion virus will execute.

3.7.2 Worm

A worm [39] is self-replicating malicious software that propagates across a net-
work, spreading from vulnerable system to vulnerable system, without human inter-
vention. Because worms use one set of victim machines to scan for and exploit new
victims, and then allow these victims to perform the same task, worms propagate
exponentially. Many of the worms released in the last decade have spread extremely
quickly throughout the Internet despite possessing inefficient targeting methods.

3.7.2.1 Flash Worm. A “flash worm” accelerates the propagation rate by
pre-scanning the Internet for vulnerable systems. Through automated scanning tech-
niques from static machines, an attacker can find thousands and thousands of vul-
nerable systems before actually releasing the worm. The attacker then initializes the
worm with the IP addresses of the systems that it has determined in advance possess
the vulnerability.

As the worm spreads, the addresses of these vulnerable systems would be split
up among the segments of the worm propagating across the network. By using a
large initial set of vulnerable systems, it is believed that an attacker could infect
almost all vulnerable systems on the Internet before any significant defense could
be mounted. Fortunately, no flash worm has been released as of the time of this
writing.

3.7.2.2 Multi-Platform Worms. Most worms that have been created and
released into the wild were constructed to attack machines running a single software
architecture, e.g., Microsoft Windows, Unix or Linux. It is envisioned that a more

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 137

destructive worm will be created that will contain exploits for a variety of popular
operating systems. Such worms will require security personnel and system adminis-
trators to apply patches in a coordinated fashion to many types of machines, which
will be a more complex process and require more time. This delay will allow the
worm to cause more damage.

3.7.2.3 Polymorphic Worms. Unlike recent worms, which have been
relatively easy for security experts to detect and determine their functionality, a
polymorphic worm will invent new disguises for itself whenever it compromises a
new machine. Detection of a polymorphic worm is more difficult because the worm
restructures its code each time it executes. A polymorphic worm will obscure, or en-
crypt, its payload, hence concealing its functionality. Reverse engineering the worm
to obtain its functionality is more difficult. The extra delay needed for the analysis of
the worm will allow the worm more time to propagate before adequate defenses are
conceived.

3.7.2.4 Zero-Day Exploit Worms. The usual defense against a worm
is to patch operating systems that possess a vulnerability that a worm may exploit.
This method has been reasonably effective since the time necessary to create a worm
will in many cases surpass the time necessary to patch. Unfortunately, this is not
always the case since important business applications may be adversely affected by
the installation of a patch, hence analysis and testing must first be performed before
the patch can be installed.

Another complications is that new vulnerabilities are discovered almost daily. An
attacker may discover a significant vulnerability and devise a worm that exploits it
before a patch is created. Security professionals will either not have a patch or will
not be able to install a patch in time to block the worm. Because of the lack of
defense preparation time, these worm attacks are considered part of a class known as
“zero-day exploits.”

3.7.3 Trojans and Backdoors

A Trojan is a malicious software program that creates a mechanism by which
the attacker can remotely access and control the victim’s computer. The mechanism
created for remote access and control is referred to as a “backdoor.” The Trojan may
be executed on the victim’s computer covertly by the attacker if the attacker can
compromise the victim’s computer to gain access. However, attackers use numerous
ways to trick a user into executing a Trojan.

138 J.V. HARRISON AND H. BERGHEL

3.7.4 Denial of Service Attacks

The objective of a Denial of Service (DOS) attack is to make one or more computer
resources unavailable to perform the function for which they are intended. A com-
puter or other network device can launch a DOS attack. When an attacker can acquire
the use of multiple hardware devices, perhaps in diverse geographic locations, the at-
tacker can launch a Distributed Denial of Service (DDOS) attack.

One classic type of DOS attack is to generate a massive amount of network traf-
fic addressed to the victim’s host or network. This host will exhaust its memory
resources attempting to consume the traffic. Consequently, it will become unavail-
able to legitimate traffic. Alternatively, the victim’s network will become completely
congested passing network traffic. The network will be unable to accept legitimate
traffic. This will again result in legitimate traffic becoming impeded for blocked.

When only a single hardware device is used to launch the DOS attack, the effects
of the attack can often be mitigated relatively quickly. Once the source of the DOS
attack is identified, network traffic streaming in from the attacker can be blocked.
The traffic can be blocked at the destination using firewall technology. Alternatively,
an Internet service provider (ISP) can be notified and directed to block the traffic
prior to arrival at the victim’s network or host “upstream.”

A DDOS attack is more difficult to mitigate. There could be from several to tens of
thousands of hosts, which are compromised and controlled by the attacker, involved
in the launching of the attack. In this case, it is very difficult for the victim’s security
professionals to repel the attack and still ensure that its computers and network can
respond effective to legitimate traffic and requests.

There are several methods by which an attacker can create an “army” of computers
to launch a DDOS attack. A worm can be created whose payload is a Trojan that
creates a backdoor to accept commands from the attacker. Alternatively, a virus can
be spread that tricks a victim into installing a Trojan that creates the backdoor.

Note that the creation of the backdoor is not strictly necessary. An attacker can
preprogram the Trojan to launch an attack at a predetermined time. In this manner,
the Trojan, and the entire DDOS attack, become “fire and forget,” to use military
parlance.

Some attackers create a hierarchy of command to control their army of compro-
mised machines. These compromised machines that comprise the army are referred
to as “zombies.” An attacker may not wish to directly communicate with every zom-
bie as it could risk compromising the attacker my revealing his/her IP address or
geographic location. Instead, the attacker issues commands to a few delegates, who
can be viewed as “senior officers.” Only these delegates, which are themselves com-
promised machines, communicate direct with the remainder of the zombie army.
Note that there is no technical reason why the hierarchy of command must be lim-

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 139

ited to two levels. The more levels involved, the more difficult it becomes to identify
the attacker.

4. Defenses

This section surveys the different classes of technologies that have been developed
to defend against the attacks described in the previous section.

4.1 Authentication

Authentication is the process of determining whether someone (or something) is
in fact, who he (or it) declares itself to be. A principal is the party whose identity is
verified. The verifier is the party who demands assurance of the principal’s identity.

As described in [14], authentication mechanisms can generally be categorized as
verifying one or more of the following about an individual:

• Something you are. This includes biometrics techniques like fingerprint scans,
retina scans, voiceprint analysis or handwriting analysis.

• Something you know. The classic example is a common password system.

• Something you have. This includes physical authentication mechanisms such as
challenge-response lists, one-time pads, smart cards, and dongles.

Some systems combine these approaches to produce what is termed as two-factor
authentication. In two-factor authentication schemes there is a security process in
which the user provides two means of identification, one of which is typically a
physical token, such as a card, and the other of which is typically something memo-
rized, such as a code known only by the user. In this context, the two factors involved
are “something you have” and “something you know.”

A bank debit card is a common example of two-factor authentication. The cus-
tomer must possess the card and also be able to provide a personal identification code
(PIN), usually from memory. Some security procedures now require three-factor au-
thentication, which involves possession of a physical token, a password along with
biometric data.

Authentication is distinct from authorization, which is the process of giving prin-
cipals access to system objects based on their identity. Authentication verifies an
identity but does not address the access rights of the individual to a particular re-
source. Authorization is usually performed after the principal has been authenticated,
and may be based on information local to the verifier, or based on authenticated state-
ments made by others.

140 J.V. HARRISON AND H. BERGHEL

Modern computer systems provide service to multiple users and require the ability
to accurately identify the user making a request. In traditional systems, the user’s
identity is verified by checking a password entered by the user during the login
process. The system records the user’s identity and relies on it to determine what
operations may be performed.

There are several popular techniques for authentication, which are described be-
low.

4.1.1 Password Systems

As described above, most systems that support an authentication mechanism im-
plement a password system. Users authenticate by providing a login name and a
password, which the system and user secretly share. This secrecy is meant to guaran-
tee that the person attempting to authenticate, by knowing the login and the password,
must be the person they purport to be. Password authentication relies on the “some-
thing you know” authentication principle.

It is common for users to release their login and password to other users for many
reasons. Users will “lend” the use of their password to others for a variety of reasons.
Login names are commonly public information and many times users choose pass-
words that are affiliated with some aspect of their lifestyle. Sometimes this might be
as simple as their initials, spouse’s name or a well-known sports figure. Sometimes a
user will retain a default login password pair provided by the software vendor, e.g.,
Oracle Corporations default password of “scott/tiger” for the Oracle relational data-
base management system. In a worst case, a user may simply select the password,
“password.”

Fortunately, there are system administration tools to prevent the use of weak pass-
words. Furthermore, organizations can use policy and training to encourage users to
select strong passwords and to reduce the likelihood that they will share the password
with others.

Password based authentication introduces additional vulnerabilities when em-
ployed over computer networks. This is because passwords sent across the network
can be intercepted, and subsequently used by an eavesdropper, to impersonate the
user. Although demonstrated to have some severe deficiencies, in many contexts a
password system does provide a level of defense from attackers.

4.1.2 Kerberos

Kerberos [30] is a network authentication service. Its development was motivated
by the need to replace “authentication by assertion” systems. In this unsophisticated
authentication technique, a process simply asserts to a network service that it is run-

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 141

ning on behalf of a principal. This method has been employed in some versions of
the Unix remote login program (“rlogin”).

Another unsophisticated authentication technique requires the principal to repeat-
edly enter a password for each access to a network service. Clearly this represents
an inconvenience for the principal. More importantly, it is insecure when accessing
services on remote machines. Assume the password was used to authenticate with
the first machine. If that machine needed the services of a second machine, the (clear
text) password would be needed again. It would have to pass (in clear text) through
the first machine to get to the second. Here the clear text represents a vulnerability.

Kerberos is based on the key distribution model developed by Needham and
Schroeder [31]. Although it relies on the “something you know” authentication prin-
ciple, Kerberos eliminates the need to demonstrate possession of private or secret
information by divulging the information itself. The principal presents a “ticket” that
is issued by the Kerberos “authentication server” (AS). In concept, presenting the
ticket is similar to presenting a drivers license as identification. In this case the au-
thenticator is an issuing body, namely the local Department of Motor Vehicles, that
is trusted to bind a ticket (the license) to an individual (the principal). The service
then examines the ticket to verify the identity of the user. If verified, the principal is
considered authenticated.

Both the principal and the service are required to have keys registered with the
AS. The principal’s key is derived from a password selected by the principal. The
service’s key is a randomly selected.

Ref. [46] describes Kerberos using the physical concept of “strongbox,” which is
a metal box with a key lock. Assume that messages are written on paper and are
“encrypted” by being locked in a strongbox by means of a key. A Principal is initial-
ized by making its own secret physical key and registering a copy of this key with
the AS. One the keys are registered, the Kerberos handshaking protocol proceeds as
described below:

First the Principal sends a message to the AS indicating that the Principal would
like to communicate with the Service. When the AS receives this message, it makes
up two copies of a new key. This key is called the session key. It will be used in the
direct communication exchange between the Principal and Server following authen-
tication. The AS places one of the session keys in Strongbox 1, along with a piece
of paper with the name Principal written on it. The AS locks Strong Box 1 using the
Principal’s key.

Note that “Strong Box 1” is really just a metaphor for an encrypted message,
and that the session key is really just a sequence of random bytes. If Strong Box 1
only contained the session key, then the principal would not be able to tell whether
the response came back from the AS, or whether the decryption was successful. By

142 J.V. HARRISON AND H. BERGHEL

placing the Service’s name in Strong Box 1, the principal will be able to verify both
that the strong box came from the AS, and that the decryption was successful.

The AS then places the second copy of the session key in a second strong box,
namely Strong Box 2. The AS includes a piece of paper with “Principal” written on
it in Strong Box 2. It locks the Strong Box 2 with the Service’s key. The AS then
returns both strong boxes to the Principal.

The Principal unlocks Strong Box 1 with the Principal’s key, extracting the session
key and the paper with the Service’s name written on it. Note that the Principal can’t
open Strong Box 2 because it’s locked with the service’s key. Instead, the Principal
puts a piece of paper with the current time written on it a new strong box, namely
Strong Box 3, and locks the box with the session key. The Principal then hands both
boxes, namely Strong Boxes 2 and 3 to the Service.

The Service opens Strong Box 2 with the Service’s own key, extracting the session
key and the paper with the Principal’s name written on it. It then opens Strong Box
3 with the session key to extract the piece of paper with the current time on it. These
items demonstrate the identity of the user.

The Kerberos system is especially noteworthy because it serves as the security
foundation for modern versions of the Microsoft operating system.

4.1.3 Biometrics

Biometrics [23] refers to the automatic identification of a person based on his/her
physiological or behavioral characteristics. This method of identification is preferred
over traditional methods involving passwords and PINs (personal identification num-
bers). The person to be identified is required to be physically present at the point-of-
identification and identification based on biometric techniques obviates the need to
remember a password or carry a physical token. Biometric authentication relies on
the “something you are” authentication principle.

With the increased use of computers interconnected by wide area computer net-
works, it is necessary to restrict access to sensitive/personal data. By replacing tra-
ditional authentication techniques, e.g., PINs, biometric techniques can potentially
prevent unauthorized access to, or fraudulent use of, ATMs, cellular phones, smart
cards, desktop PCs, workstations, and computer networks. PINs and passwords may
be forgotten, and token-based methods of identification like passports and driver’s
licenses may be forged, stolen, or lost. Biometric systems are designed to overcome
these deficiencies.

Various types of biometric systems are being used for real-time identification. The
most popular are based on face, iris and fingerprint matching. However, there are
other biometric systems that utilize retinal scan, speech, signatures and hand geom-
etry. A biometric system is essentially a pattern recognition system that makes a

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 143

personal identification by determining the authenticity of a user’s specific physiolog-
ical or behavioral characteristic.

Depending on the context, a biometric system can be either a verification (au-
thentication) system or an identification system. Verification involves confirming or
denying a person’s claimed identity. In identification, one has to establish a person’s
identity. Each one of these approaches has its own complexities and could be ad-
dressed using a specific biometric system.

4.1.4 Physical Authentication
Mechanisms for physical authentication rely on the “something you are” authen-

tication principle. The most common form of physical authentication is a hardware
token such as a smart card or dongles.

Smart cards are small plastic cards that contain an embedded integrated circuit.
Most are similar in size to a standard credit or debit card. One fundamental problem
in securing computer systems is the need for tamper-resistant storage of encryption
keys. Smart cards provide this functionality as well as the ability to upgrade and/or
replace security technique that becomes compromised.

Early generation smart cards provided a memory function. Information, such as
a unique identifier, could be stored on the card. Modern smart cards are essentially
small computers. They contain embedded microprocessors, run their own operating
systems and include non-volatile primary memory. The operating system for a smart
card is usually installed on the card by the manufacturer and cannot be changed
without sophisticated equipment, if at all. A unique serial number is programmed
within each card.

Smart cards are broadly categorized based on their type of interface to the device
they communicate with, which is called a reader. The two types of interfaces are
referred to as “contact” and “contact-less.” “Contact” smart cards use electrical con-
tacts, placed on the cards in accordance with international standards, to allow them
to be read by devices known as smart card readers. “Contactless” smart cards use
low frequency radio waves to provide power and to communicate with smart card
readers. Most contactless smart cards can be read from a distance of about fifteen
centimeters even if still contained within a wallet or handbag.

The information stored within the card can be used for authentication in a variety
of application domains, namely financial payments, critical health care information,
immigration control and even as a unique identifier for Internet use. Due to their
suitability as a physical authentication technology, smart card use is becoming more
common. However, there are vulnerabilities associated with smart cards, which are
described in [37].

A dongle is a hardware device with a similar function as a smart card except that
there is no reader. Dongles typically directly connect to a computer via a serial or

144 J.V. HARRISON AND H. BERGHEL

USB port. Dongles have been traditionally used to prevent software privacy. The
protected software will not operate properly on the computer unless the dongle is
present.

4.2 Encryption

As described in [32], encryption and decryption allow two parties to communicate
without any other party being able to view the communication. The sender encrypts,
or scrambles, information before sending it. The receiver decrypts, or unscrambles,
the information after receiving it. While in transit, the encrypted information is un-
intelligible to an interceptor, e.g., an attacker.

Encryption is the process of transforming information so it is unintelligible to any-
one but the intended recipient. Decryption is the process of transforming encrypted
information so that it is again intelligible. A cryptographic algorithm, also called a
cipher, is a mathematical function used for encryption or decryption. In many cases,
two related functions are employed, one for encryption and the other for decryption.

The ability to keep encrypted information secret is based not on the cryptographic
algorithm, which is usually widely known, but on a number called a key that must
be used with the algorithm to produce an encrypted result or to decrypt previously
encrypted information. Decryption with the correct key is simple and relatively
efficient. Decryption without the correct key is very difficult, and in some cases im-
possible for all practical purposes.

Related to encryption is the concept of tamper detection, which allows the recip-
ient of information to verify that it has not been modified in transit. Any attempt to
modify data or substitute a false message will be detected. Nonrepudiation prevents
the sender of information from claiming at a later date that the information was never
sent.

4.2.1 Symmetric-Key Encryption

With symmetric-key encryption, the encryption key can be calculated from the
decryption key and vice versa, or more commonly, the same key is used for both
encryption and decryption. Implementations of symmetric-key encryption can be
highly efficient, so that users do not experience any significant time delay as a re-
sult of the encryption and decryption.

Symmetric-key encryption also provides a degree of authentication support, since
information encrypted with one symmetric key cannot be decrypted with any other
symmetric key. As long as the symmetric key is kept secret by the two parties using
it to encrypt communications, each party can be sure that it is communicating with
the other, assuming that the messages received are not garbled.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 145

Symmetric-key encryption is effective only if the symmetric key is kept a secret by
both parties involved. If a third party obtains the key, the communication’s confiden-
tiality and authentication is compromised. An unauthorized person with a symmetric
key can decrypt messages sent with that key and encrypt new messages for transmis-
sion as if they came from one of the two authorized parties.

Symmetric-key encryption plays an important role in the SSL protocol, which is
widely used for authentication, tamper detection, and encryption over TCP/IP net-
works. SSL also uses techniques of public-key encryption.

4.2.2 Public-Key Encryption

Public-key encryption, which is also called asymmetric encryption, involves a pair
of keys, namely a public key and a private key, associated with an entity that needs
to authenticate its identity electronically or to sign or encrypt data. Each public key
is published, and the corresponding private key is kept secret. Data encrypted with
a public key can be decrypted only with the corresponding private key. In general,
to send encrypted data to someone, you encrypt the data with that person’s public
key, and the person receiving the encrypted data decrypts it with the corresponding
private key.

Compared with symmetric-key encryption, public-key encryption requires more
computation and is therefore not always appropriate for large amounts of data. How-
ever, public-key encryption can be used to send a symmetric key, which can then
be used to encrypt additional data. This is the approach used by popular security
protocols, e.g., the Secure Sockets Layer (SSL) protocol.

Data encrypted with a private key can be decrypted only using the corresponding
public key. This would not be a desirable way to encrypt sensitive data, however, be-
cause it means that anyone with the public key, which is by definition published,
could decrypt the data. Nevertheless, private-key encryption is useful, because it
means one can use a private key to sign data with your digital signature. Party A’s
software can then use the appropriate public key to confirm that the message was
signed with Party B’s private key and that it hasn’t been tampered with since being
signed.

4.2.3 Digital Signatures

A digital signature [32] proves that electronic data was signed by the individual
who claims to have signed it. It is analogous to a handwritten signature. Once a
signer has signed data, it is difficult for the signer to deny doing so at a later time.
This assumes that the private key has not been compromised or out of the owner’s
control.

146 J.V. HARRISON AND H. BERGHEL

This quality of digital signatures provides a high degree of non-repudiation, which
means digital signatures make it difficult for the signer to deny having signed the
data. In some legal jurisdictions, a digital signature may be as legally binding as a
handwritten signature.

Digital signatures are used for tamper detection and authentication. They rely on a
mathematical function called a message digest that produces a one-way hash. A one-
way hash is a number of fixed length whose value is unique for the hashed data. Any
change in the data, even deleting or altering a single character, results in a different
hash value. The content of the hashed data cannot, for all practical purposes, be
deduced from the hash alone.

It is possible to use a private key for encryption and the corresponding public key
for decryption. Although this does not prevent an eavesdropper from intercepting,
decrypting and viewing the data, it is a necessary part of digitally signing any data.
Instead of encrypting the data itself, the signing software creates a one-way hash of
the data, which then uses the private key to encrypt the hash. The encrypted hash,
along with other information, such as the hashing algorithm, serves as a digital sig-
nature.

To validate the integrity of the data, the receiving software first uses the signer’s
public key to decrypt the hash. It then uses the same hashing algorithm that generated
the original hash to generate a new one-way hash of the same data. Note that infor-
mation about the hashing algorithm used is sent with the digital signature. Finally,
the receiving software compares the new hash value against the original hash value.

If the two hash values do not match, the data may have been tampered with since
it was signed, or alternatively, the signature may have been created with a private key
that does not correspond to the public key presented by the signer. If the two hash
values do match, the data has not changed since it was signed and the recipient can
be certain that the public key used to decrypt the digital signature corresponds to the
private key used to create the digital signature.

Note that confirming the identity of the signer, however, also requires some way
of confirming that the public key really belongs to a particular person or other entity.
Certificate Authorities (CAs) declare the validity of public keys.

4.3 Firewalls

A firewall [19] attempts to defend networked computers from intentional, hostile
intrusion. A firewall may be a hardware device or a software program running on
a secure host computer. It must have at least two network interfaces, one for the
network it is intended to protect, and one for the network it is exposed to.

A firewall sits at the junction point, or gateway, between the two networks, which
are often a private network and a public network such as the Internet. Early firewalls

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 147

were simply routers. The firewall would segment a network into different physical
subnetworks and attempt to prohibit damage that could spread from one subnet to
another. Network firewalls borrow from the concept of a physical firewall, which
insulates a physical building from an adjacent building in case of fire.

A firewall inspects all traffic routed between two (or more) networks. A firewall
may allow all traffic through unless it meets certain criteria, or it may deny all traffic
unless it meets certain criteria. Firewalls may discriminate based on type of traffic,
or by source or destination network (IP) addresses and transport layer “ports.” They
may employ complex rule sets that are applied to determine if the traffic should be
allowed to pass. A modern firewall can filter both inbound and outbound traffic. It
can also log all attempts to enter a private network, and trigger real-time alarms,
when hostile or unauthorized entry is attempted or detected.

There are several broad categories of firewalls: packet filters, circuit level gate-
ways, application level gateways and multilayer inspection firewalls. Packet filtering
firewalls work at the network level or the IP layer of TCP/IP. They are usually part
of a router. A router is a device that receives packets from one network and forwards
them to another network.

In a packet filtering firewall each packet is compared to a set of criteria before it is
forwarded. Depending on the packet and the criteria implemented using the logical
rules, the firewall can drop the packet, forward it or send a message to the originator.
Rules can reason with source and destination IP address, source and destination port
number and protocol used and other protocol characteristics.

Circuit level gateways work at the session layer or the TCP layer. They monitor
TCP handshaking packets to determine whether a requested session is legitimate.
However, they do not monitor packets transmitted after the initial handshaking pack-
ets.

Application level gateways, also called proxies, are similar to circuit-level gate-
ways except that they are application specific. Incoming or outgoing packets cannot
access services for which there is no proxy. Application level gateways inspect the
application level content of packets, which forces a proxy implementation to be very
fast and efficient.

Multilayer inspection firewalls combine the benefits of the types of firewalls de-
scribed above. They filter packets at the network layer, determine whether session
packets are legitimate and analyze the contents of packets at the application layer.

4.4 Intrusion Detection Systems

Intrusion detection systems (IDSs) [22] detect intrusions made by attackers in host
computers and networks. They alert individuals upon detection of an intrusion by
sending out e-mail, pages or Simple Network Management Protocol (SNMP) traps.

148 J.V. HARRISON AND H. BERGHEL

This provides an administrator of the IDS with a notification of a possible security
incident.

An IDS may automatically respond to an event by logging off a user, blocking
traffic, closing sessions, disabling accounts, executing a program or by performing
some other action. IDSs detect and respond to threats from both inside and outside a
network or host computer.

Most IDSs are categorized as either “host-based” or “network-based.” Host-Based
IDS (HIDS) collect and analyze system, audit and event logs that originate on a host
computer. They may also analyze patterns of executed commands, system calls made
by applications, or of access to specific system resources by users and processes.

As opposed to monitoring the activities that take place on a particular host com-
puter, network-based intrusion detection systems (NIDS) analyze data packets that
traverse networks. Packets are inspected, and sometimes compared with empirical
data, to analyze their legitimacy. NIDS detect attacks from outside a defender’s net-
work that attempt to abuse network resources or allow an attacker entry. However,
NIDS can also be employed within a defender’s network.

The TCP/IP packets that initiate an attack can be detected by a properly config-
ured, administered and monitored NIDS. If the data within the packet is encrypted,
then the effectiveness of a NIDS may be limited.

There are at many techniques that are employed by an IDS to detect an attacker.
One technique directs the IDS to search for anomalous behavior. An IDS establishes
a baseline of normal usage patterns, and activity that deviates from the pattern is
reported as a possible intrusion. Usage patterns can be analyzed, such as profiling
the programs that users execute daily. If the IDS detects that a warehouse clerk has
begun accessing human resource applications, or is using a C++ compiler, the IDS
would then alert its administrator.

An IDS may have access to a database of previously identified patterns of unau-
thorized behavior to predict and detect subsequent similar attempts. These specific
patterns are called signatures. For a HIDS, one example signature could be a spe-
cific number of failed login attempts. For a NIDS, a signature could be a specific bit
pattern that matches a section of a network packet header.

Another technique that an IDS can employ is to search for unauthorized mod-
ifications of specified files. Attempts at covert editing of files can be detected by
computing a cryptographic hash at periodic intervals. The hash can be checking for
changes over time. This process does not require constant monitoring by the admin-
istrator.

Some attackers perform reconnaissance of a victim’s network for several months
prior to launching the debilitating attack. A sophisticated IDS can correlate data ob-
tain from the attacker’s reconnaissance with other data to either forecast the attack
or obtain better forensic evidence after the attack.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 149

4.4.1 Honeypots and Honeynets
A honeypot [41] is an information system resource whose value lies in unautho-

rized or illicit use of that resource. It is a resource that has no authorized activity, nor
any production value. When appearing as a device on a network, a honeypot should
receive very little if any traffic because it has no legitimate activity or production
function. Any interaction with a honeypot is unauthorized or malicious activity. Any
connection attempt to a honeypot is most likely a probe or an attack.

The amount of log data collected by a honeypot will be significantly less that of a
production system. However, the data collected will likely represent “true positives”
in terms of representing malicious activity since honeypots do not rely on knowledge
of preexisting attack types to provide useful information. Attacks and probes that can
covertly evade network security devices like firewalls by utilizing encryption will still
be detected by a honeypot.

Honeypots only detect those attacks that specifically involve the honeypot itself.
An attack on a production system that does not affect the honeypot will not be
detected by the honeypot. Furthermore, allowing the honeypot to interact with an
attacker introduces the risk that the attacker will compromise the honeypot. This
would allow the attacker to use the honeypot as a platform to attack other systems.

Honeypots can be aggregated to build honeynets [21]. A Honeynet is a network
that contains one or more honeypots. As honeypots are not production systems, the
honeynet also has neither production activity nor authorized services. Therefore, any
interaction with a honeynet implies malicious or unauthorized activity.

A honeytoken [42] is any type of digital entity that performs a similar function
to a honeypot. Specifically, a honeytoken is a digital resource whose value lies in
the detectable, unauthorized use of that resource. Some examples could be a bogus
social security number or credit card number, a dummy financial spreadsheet or word
processing document, a database entry, or even a bogus login. If the honeytoken
traverses the network or is found outside of the controlled network, it is clear that a
system has been compromised.

4.5 Antivirus Technology
Antivirus software [28] is specifically written to defend a system against the

threats posed by a virus. There are a number of techniques that antivirus software
can employ to detect a virus. Some are presented in this section.

Signature scanning is employed by the majority of antivirus software programs.
Signature scanning involves searching the target computer for a pattern that could
indicate a virus. These patterns are referred to as signatures. These set of signatures
are updated by the software vendors on a regular basis to ensure that antivirus scan-
ners can detect the most recent virus strains. A deficiency of this approach is that the

150 J.V. HARRISON AND H. BERGHEL

antivirus software cannot detect a threat made by a virus if it does not possess the
virus’ signature.

Heuristic scanning attempts to detect preexisting as well as new viruses by look-
ing for general characteristics of malicious software. The primary advantage of this
technique is that is does not rely on bit level signatures. It relies on general “rules
of thumb” describing what code a virus might contain. However, this method does
suffer from some weaknesses.

One weakness is a propensity to generate false positives. As the technique relies on
heuristics, which are not always completely accurate, it may report legitimate soft-
ware as being a virus if the software that implements the virus exhibits traits believed
to be consistent with a virus. Another weakness is that the process of searching for
traits is more difficult for the software to achieve than looking for a known bit pattern
signature. Therefore, heuristic scanning can take significantly longer than bit pattern
signature scanning.

Finally, the functions encoded in a new virus may not be recognized as malicious.
If a new virus contains a function that has not been previously identified, the heuristic
scanner will likely fail to detect it.

Behavior blocking is an antiviral technique that focuses on the behavior of a virus
attack rather than the virus code itself. For example, if an application attempts to
open a network port or delete a system file, a behavior blocking antivirus program
could detect this as typical malicious activity, and then alert an administrator of a
possible attack.

Most antivirus software available today employs a mixture of these techniques in
their antivirus solutions in an attempt to improve the overall protection level.

4.6 Construction of Secure Software

Errors introduced during the software development process are a leading cause of
software vulnerability [36]. The errors are not identified during the software testing
process. Instead, they are identified after the software is deployed into many organi-
zations around the world. If the software is a popular desktop application, the size of
the deployed user base is in the millions.

In many cases the errors are discovered by irresponsible individuals or individ-
uals with malicious intent. The information is then almost immediately distributed
to attackers worldwide using the Internet. The attacker community then conspires
to formulate strategies to exploit the errors before a software patch can be created
and distributed by the software vendor, and then installed by system administrators.
The process where software vendors and system administrators react to errors only
after attackers identify and exploit software errors is referred to as the “penetrate and

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 151

patch” software remediation process. The ineffectiveness of this process has resulted
in temporary, but spectacular, worldwide software failures [16,40].

Consequently, some experts believe that one of the most important issues in de-
fensive computing is the process in which software is constructed [47]. Defects
introduced in the software construction process, and also the maintenance process,
introduce security holes that require substantial resources to correct. The resources
may be additional “add-on” system components like intrusion detection systems and
firewalls. These resources may also include the cost of the development of software
patches, their subsequent distribution, and finally the cost incurred by the end user
to interrupt live systems to install and test following the installation of the patch. In
a worse case the resources might also have to include massive funds to pay legal
costs when either the software vendor, or enterprise whose security was breached,
must respond to civil complaints due to the losses incurred by end users and large
organizations. The techniques for building secure software fall outside of the scope
of this chapter but are described in detail in [47].

Security engineering [1] is an emerging discipline focused on the construction of
systems that will “remain dependable in the face of malice, error or mischance.” It
is a discipline that focuses on the tools, processes and methods needed to design,
implement and test entire systems to ensure security, and to adapt existing systems
as their environment evolves. Security engineering subsumes “system engineering”
techniques, such as business process analysis, software engineering and testing be-
cause system engineering exclusively addresses error and mischance, but not malice.
It is hoped that software professionals educated in security engineering principles
will produce less vulnerable systems and therefore reduce or eliminate the “pene-
trate and patch” cycle.

The techniques introduced by security engineering require cross disciplinary
knowledge in fields as diverse as cryptography, computer security, hardware tamper-
resistance, formal methods, applied psychology, organizational methods, audit and
the law. A full explanation would fall outside of the scope of this chapter. Interested
readers are directed to [1].

In addition to the development of secure software, software systems should pro-
vide tools, utilities or build-in functionality to enable system administrators, and even
end users, to easily monitor system security and perform security related tasks. For
example, modern versions of the Microsoft Windows™ operating system contains
a system management facility to provide access control features to restrict access to
files and executable programs based on individual users and groups of these users.
User passwords are also administered with this facility, which is quite useful.

Unfortunately, the facility does not allow the user to identify programs, either ma-
licious or non-malicious, that have taken the liberty of configuring themselves to
execute when Windows™ starts. This would be a useful feature of the facility be-

152 J.V. HARRISON AND H. BERGHEL

cause there are at least ten different methods a program can use to ensure it starts
when Windows boots [34,20]. Determining if these methods have been employed
requires inspection of special system folders, cryptically named system files and ob-
scure registry entries as well as possessing knowledge of the esoteric details of the
purpose and format of these data items. There is no easily assessable, inherent sup-
port for testing to determine which methods have been employed. Even technical
users find it time consuming to investigate all of the possibilities without the use of
3rd party tools.

5. A Forecast of the Future

The intensity of the conflict in cyberspace is increasing. In fact, the scenario that
is now unfolding presents the ideal environment for the development of a “weapon
of mass disruption.” The scenario is characterized by the following developments:

• There is an increase in the penetration of the Internet in every area of business,
communications, government, financial systems, the military and our personal
lives.

• There is an increase in the dependence on these Internet-based information sys-
tems.

• The complexity of computer systems is far surpassing the average personal abil-
ity to understand the vulnerabilities. In fact, this complexity is surpassing even
professional software technicians’ ability to understand, much less address, the
vulnerabilities.

• Average people are using computers controlled by software with severe vul-
nerabilities that are connected by high-speed networks to attackers all over the
world, and outside U.S. legal jurisdiction.

• Attackers are developing more sophisticated, and more damaging, attacks and
are identifying more attack vectors.

• There is an increase in both the number and competence of attackers.

These developments amount to what could be called a “perfect storm,” or ideal envi-
ronment, for a complete breakdown of the U.S., and even worldwide, data commu-
nication infrastructure. This interruption has the potential to be devastating a variety
of government, financial, medical, media and military organizations.

Perhaps even worse, once this breakdown occurs, it is conceivable that many peo-
ple will lose faith in those professing the potential benefits of computers and the
Internet. The promise of the Internet will remain unfulfilled. It may take many years

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 153

to restore the public confidence in the technology, resulting in what could be called
a technological “depression.”

Although the scenario described above is quite bleak, there may be time to mount
a concerted effort to ward off a major failure of the national data communication in-
frastructure. Unfortunately, it is not clear that there is enough momentum within our
society, including those organizations that produce and use software and networks.
In fact, as we concluded the writing of this chapter, the Washington Post reported that
the government’s “Cybersecurity” Chief had abruptly resigned from the Homeland
Security Department after only serving one year [7]. The Washington Post reported
that sources indicated that the government’s lack of attention paid to computer secu-
rity issues was a factor in the Chief’s decision.

6. Defensive Precautions

Software professionals worldwide are becoming more aware of the threats against
computer systems posed by attackers of all types. There are significant network se-
curity resources available to software professionals who wish to take steps to create
a stronger defense. Hopefully, this will result in better security for enterprises, gov-
ernments and Internet service providers.

As software professionals harden information infrastructure the weakest “link” in
the security “chain” will be naïve end users and those end users who are aware of
the threat but do not possess the technical knowledge to mount an adequate defense.
Therefore, in this section we describe precautions that an Internet user can undertake
to resist an attacker. These precautions are based on [35].

• Install, use and maintain anti-virus (AV), and spyware, software obtained from
reputable vendors. AV software searches your computer for the presence of
malicious code. Uses should obtain and install AV software. They should also
ensure that the software is actively monitoring their system. Finally, they must
ensure that they are receiving the signatures, i.e., identifying characteristics, of
the most recent threats. These signatures can usually be obtained via a paid
subscription service from AV vendors.

• Download and install software patches frequently. It is difficult and expensive
to produce software with zero defects. Consequently, most software products
contain defects. This holds true for proprietary commercial products as well as
those products that result from open source initiatives. Therefore, professional
software producers provide a mechanism for the software to be modified to cor-
rect the defects, even after the software has been deployed. These modifications,
called patches, can be obtained from the software producer. They can then be

154 J.V. HARRISON AND H. BERGHEL

installed manually. Some organizations provide extra software that automates
this process, which causes patches to be downloaded and installed as soon as
they become available. The speed of this process is important to prevent attack-
ers from exploiting the defect before the software can be patched.

• Beware of e-mail attachments. E-mail attachments often contain an attacker’s
malicious executable. Antivirus software will sometimes detect this code and
report it to the user. One heuristic for handling attachments is simply to never
execute code that is contained within an attachment. Even if the attachment is
presented as having been sent by a friend or co-worker, the sender’s address
may have been spoofed. Even if the sender’s address can be verified, the attach-
ment may still be unsafe as the sender, who you assume has the best intentions,
may be unaware of malicious code within the attachment. Attachments that ap-
pear to be application specific non-executable, e.g., word processing documents,
spreadsheets, photos, and movies, may in fact be, or contain, malicious code.
One technique to reduce ones risk if a attachment has to be used is to download
the supposed non-executable file, using the browser’s “save as” feature, and
then open the file using the intended application. If the file is not a legitimate
file for the application, the application will normally report this.

• Use extreme care when downloading and installing programs. The Internet pro-
vides users with many opportunities to download software, often at no cost. Like
e-mail attachments, any software that is downloaded from the Internet can also
be malicious. A user must be convinced that the organization that directly pro-
duced, or distributed, the software is reputable, and also that the organization is
technically capable of ensuring that the software is safe.

• Use a software firewall program. Software firewalls monitor the Internet traffic
that enters into, and exits from, a user’s computer. Rules can be established that
block traffic in either direction that is believed to initiated directly, or indirectly,
by an attacker. These rules can either be manually created, which is made easier
via use of a friendly interface that is provided by the firewall. Alternatively, the
firewall program may come preconfigured with rules that are effective for use
with popular user software. Some users are unaware that egress traffic, namely
traffic leaving their own computer, can be malicious or part of an attack.

• User a hardware firewall. Hardware firewalls can reduce ones profile and ex-
posure to an attacker. Attacks launched against the user’s computer must be
made indirectly via the hardware firewall. Some inexpensive hardware firewalls
can block attacks that involve particular TCP/IP ports and obscure the user’s
hardware and software configuration. Each firewall also has a small, hardened
operating system residing in read-only memory, which makes the firewall more
difficult to compromise.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 155

• Ensure there is a backup of all files. Clearly no one wishes to lose expensive
software, or more importantly, valuable, private documents, photos, movies,
music and other digital assets residing on ones computer. Unfortunately, there
are many ways that the files that contain these assets can be lost, compromised
or destroyed. Computers can be stolen, users make errors managing folders,
media of all types can fail and hackers can compromise systems. A simple, but
often overlooked safety precaution is to make backup copies of all files. Oper-
ating system and application executable file are somewhat protected by default
since a copy resides on the original media, or can usually be obtained from the
vendor. However all files a user directly, or indirectly, creates must be protected
via backup by a user or by a competent system administrator.

• Use strong passwords and change them frequently. Certain types of passwords
are easy for an attacker to guess, with or without automated assistance. Some
individuals use their own name, their own user name, or the default password
provided by the software. Some users simply choose “password.” These are triv-
ial to guess. Even non-obvious passwords are easily identified using password
cracking programs, which are freely available on the Internet. Longer passwords
comprised of seemingly random strings of upper and lower case letters, num-
bers and special symbols are best. Even then, the password should be changed
frequently and not used for multiple systems. This avoids the problem of one
password becoming known to an attacker who can then use it to compromised
other systems. Many systems, and ethical system administrators, will test the
strength of a users password to ensure that it can withstand an attack.

• Use a file encryption program and access control. If network security is
breached the resulting damage can be mitigated through the use of encryption
and access control. Encrypting important files will deny the attacker from de-
riving much value from the files. Other than exhibiting the files to demonstrate
a successful intrusion, there is little more the attacker can do with them. Access
control restricts access to digital assets and other system resources. Specific
users can be assigned different rights to perform different actions on different
resources. If an attacker is successful in deceiving an authentication mechanism,
the damage that the attacker can do is limited to what the impersonated user
could do. The access control method quarantines the damage to the resources
accessible to the compromised user.

• Ensure you are communicating with who they say they are. Attackers will usu-
ally pursue the path of least resistance when attempting to breach a system.
Often that path is a naïve, trusting or exceptionally friendly employee. With-
out proper awareness, employees can be tricked into providing information that
an attacker can exploit. Pausing to confirm the identity of someone requesting

156 J.V. HARRISON AND H. BERGHEL

information, by asking a colleague to confirm the individual’s identify, or alter-
natively ending an incoming call to allow one to call back to confirm a phone
number, are techniques that a user can employ to avoid becoming a victim.

The steps above will not guarantee that an attacker will never be successful. However,
advising users to follow these precautions will reduce the chance of an attacker’s
success.

7. Conclusion

This chapter provided a survey of the electronic information battle currently being
waged on the global data communication infrastructure. This survey differed from
others in that it presented common, albeit not all, categories of attacks in a struc-
ture that is consistent with the TCP/IP protocol stack layers. Categories of attacks
were presented as opposed to the myriad of esoteric technical details necessary to
understand any one single instance of an individual attack.

After presenting categories of attacks, we presented an overview of accepted tech-
niques that have been created to defend against the various attack categories. A list
of precautions that an average user can employ to resist an attacker was provided.
We then presented our somewhat pessimistic view of the future of computer and net-
work security with the hope of challenging others within the software community to
address this important topic.

REFERENCES

[1] Anderson R.J., Security Engineering: A Guide to Building Dependable Distributed Sys-
tems, Wiley, ISBN 0471389226, January, 2001.

[2] Alger J., “Introduction to information warfare”, in: Schwartau W. (Ed.), Information War-
fare, Cyberterrorism: Protecting Your Personal Security in the Information Age, second
ed., Thunder’s Month Press, New York, 1996, pp. 8–14.

[3] Bellovin S.M., “Security problems in the TCP/IP protocol suite”, Computer Communi-
cations Review 2 (19) (April, 1989) 32–48.

[4] Berghel H., “Caustic cookies”, Digital Village, Communications of the ACM (April,
2001) 19–22.

[5] Berghel H., “The Code Red worm”, Communications of the ACM (November, 2001)
15–19.

[6] Berghel H., “Malware month of the millennium”, Communications of the ACM (Decem-
ber, 2003) 15–19.

[7] Bridis T., “U.S. Cybersecurity Chief Resigns, Washington Post (.com)”, The Associated
Press, Friday, October 1, 2004.

A PROTOCOL LAYER SURVEY OF NETWORK SECURITY 157

[8] Web bugs, URL: http://www.leave-me-alone.com/webbugs.htm, 2002.
[9] Bush V., “As we may think”, The Atlantic Monthly (July, 1945).

[10] Computer Associates International, Inc., “Computer viruses—an introduction”, URL:
http://www3.ca.com/solutions/collateral.asp?CID=33330&ID=897&CCT=, 2004.

[11] “CERT advisory CA-1998-01 smurf IP denial-of-service attacks”, URL: http://www.cert.
org/advisories/CA-1998-01.html, March 13, 2000.

[12] “CERT advisory CA-1996-21 TCP SYN flooding and IP spoofing attacks”, URL:
http://www.cert.org/advisories/CA-1996-21.html, November 29, 2000.

[13] CERT Coordination Center, “Spoofed/forged email”, URL: http://www.cert.org/
tech_tips/email_spoofing.html, 2002.

[14] Chapman B.D., Zwicky E.D., Building Internet Firewalls, first ed., O’Reilly & Asso-
ciates Publishers, ISBN 1-56592-124-0, November, 1995.

[15] “daemon9”, Phrack Magazine 7 (49) (August, 1996), URL: http://www.phrack.org/show.
php?p=49&a=6.

[16] Denning D., Information Warfare and Security, Addison–Wesley, ISBN 0-201-43303-6,
1999.

[17] Dhar S., “SwitchSniff”, Linux Journal (March 05, 2002), online, URL: http://www.
linuxjournal.com/article.php?sid=5869.

[18] Forouzan B., TCP/IP Protocol Suite, second ed., McGraw-Hill Higher Education,
ISBN 0-07-119962-4, 2003.

[19] FreeBSD Handbook, The FreeBSD Documentation Project, Copyright 2004.
[20] Gralla P., Windows XP Hacks, first ed., O’Reilly, ISBN 0-596-00511-3, August, 2003.
[21] Honeynet Project, “Know your enemy: Honeynets”; URL: http://project.honeynet.org/

papers/honeynet/index.html, November, 2003.
[22] Innella P., McMillan O., “An introduction to intrusion detection systems”, URL:

http://www.securityfocus.com/infocus/1520, December, 2001.
[23] Jain A.K., Pankanti S., Prabhakar S., Hong L., Ross A., Wayman J.L., “Biometrics: a

grand challenge”, in: Proc. International Conference on Pattern Recognition (ICPR),
vol. II, Cambridge, UK, August, 2004, pp. 935–942.

[24] Kay R., “Phishing”, URL: Computer World Online, http://www.computerworld.com/
securitytopics/security/story/0,10801,89096,00.html, January, 2004.

[25] Liska A., Network Security: Understanding Types of Attacks, Prentice Hall Publishers,
2003.

[26] Mayer-Schönberger V., “The cookie concept”, URL: http://www.cookiecentral.com/
c_concept.htm.

[27] McDowell M., “Avoiding social engineering and phishing attacks”, URL: http://www.
us-cert.gov/cas/tips/ST04-014.html, July, 2004.

[28] Microsoft Corporation, “The antivirus defense-in-depth guide”, URL: http://www.
microsoft.com/technet/security/guidance/avdind_0.mspx, August, 2004.

[29] Mitnick K., The Art of Deception, Wiley Publishing, 2002.
[30] Neuman B.C., Ts’o T., “Kerberos: an authentication service for computer networks”,

IEEE Communications 32 (9) (September, 1994) 33–38.
[31] Needham R.M., Schroeder M.D., “Using encryption for authentication in large networks

of computers”, Communications of the ACM 21 (12) (1978) 993–999.

http://www.leave-me-alone.com/webbugs.htm
http://www3.ca.com/solutions/collateral.asp?CID=33330&ID=897&CCT=
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/tech_tips/email_spoofing.html
http://www.cert.org/tech_tips/email_spoofing.html
http://www.cert.org/tech_tips/email_spoofing.html
http://www.phrack.org/show.php?p=49&a=6
http://www.phrack.org/show.php?p=49&a=6
http://www.phrack.org/show.php?p=49&a=6
http://www.linuxjournal.com/article.php?sid=5869
http://www.linuxjournal.com/article.php?sid=5869
http://www.linuxjournal.com/article.php?sid=5869
http://project.honeynet.org/papers/honeynet/index.html
http://project.honeynet.org/papers/honeynet/index.html
http://project.honeynet.org/papers/honeynet/index.html
http://www.securityfocus.com/infocus/1520
http://www.computerworld.com/securitytopics/security/story/0,10801,89096,00.html
http://www.computerworld.com/securitytopics/security/story/0,10801,89096,00.html
http://www.computerworld.com/securitytopics/security/story/0,10801,89096,00.html
http://www.cookiecentral.com/c_concept.htm
http://www.cookiecentral.com/c_concept.htm
http://www.cookiecentral.com/c_concept.htm
http://www.us-cert.gov/cas/tips/ST04-014.html
http://www.us-cert.gov/cas/tips/ST04-014.html
http://www.us-cert.gov/cas/tips/ST04-014.html
http://www.microsoft.com/technet/security/guidance/avdind_0.mspx
http://www.microsoft.com/technet/security/guidance/avdind_0.mspx
http://www.microsoft.com/technet/security/guidance/avdind_0.mspx

158 J.V. HARRISON AND H. BERGHEL

[32] Netscape Corporation, “Introduction to public-key cryptography”, URL: http://developer.
netscape.com/docs/manuals/security/pkin/contents.htm, October, 1998.

[33] “Network Mapper”, URL: http://www.insecure.org/nmap/.
[34] Otey M., “Windows program startup locations”, Windows IT Pro Magazine, URL:

http://www.windowsitpro.com/Articles/ArticleID/27100/27100.html, December, 2002.
[35] Rogers L., Home Computer Security, Software Engineering Institute, Carnegie Mellon

University, 2002, URL: http://www.cert.org/homeusers/HomeComputerSecurity/.
[36] SANS Institute, “The twenty most critical Internet security vulnerabilities (updated) ∼

The Experts Consensus, version 5.0”, URL: http://www.sans.org/top20/, October, 2004.
[37] Schneier B., Shostack A., “Breaking up is hard to do: modeling security threats for smart

cards”, in: USENIX Workshop on Smart Card Technology, USENIX Press, 1999, pp. 175–
185.

[38] Shake T.H., Hazzard B., Marquis D., “Assessing network infrastructure vulnerabilities
to physical layer attacks”, in: Proceedings of the 22nd National Information Security
Systems Conference, 1999.

[39] Skoudis E., “Cyberspace terrorism”, Server World Magazine (February, 2002); URL:
http://www.serverworldmagazine.com/monthly/2002/02/superworms.shtml.

[40] Skoudis E., Malware—Fighting Malicious Code, Prentice-Hall, 2004.
[41] Spitzner L., “Honeypots—definitions and value of honeypots”, URL: http://www.

tracking-hackers.com/papers/honeypots.html, May, 2003.
[42] Spitzner L., “Honeytokens: the other honeypot”, URL: http://www.securityfocus.com/

infocus/1713, July, 2003.
[43] “The spyware guide”, URL: http://www.spywareguide.com/txt_intro.php, 2004.
[44] Stevens R.W., Wright G., TCP/IP Illustrated, vols. 1–3, Addison–Wesley, Boston, 1994.
[45] Tanase M., “IP spoofing: an introduction”, Security Focus (March, 2003), URL:

http://www.securityfocus.com/infocus/1674.
[46] Brian Tung B., “The Moron’s guide to Kerberos, version 1.2.2”, University of Southern

California, Information Sciences Institute, December, 1996, URL: http://www.isi.edu/
gost/brian/security/kerberos.html.

[47] Viega J., McGraw G., Building Secure Software, Professional Computing Series,
Addison–Wesley, 2002.

http://developer.netscape.com/docs/manuals/security/pkin/contents.htm
http://developer.netscape.com/docs/manuals/security/pkin/contents.htm
http://developer.netscape.com/docs/manuals/security/pkin/contents.htm
http://www.insecure.org/nmap/
http://www.windowsitpro.com/Articles/ArticleID/27100/27100.html
http://www.cert.org/homeusers/HomeComputerSecurity/
http://www.sans.org/top20/
http://www.serverworldmagazine.com/monthly/2002/02/superworms.shtml
http://www.tracking-hackers.com/papers/honeypots.html
http://www.tracking-hackers.com/papers/honeypots.html
http://www.tracking-hackers.com/papers/honeypots.html
http://www.securityfocus.com/infocus/1713
http://www.securityfocus.com/infocus/1713
http://www.securityfocus.com/infocus/1713
http://www.spywareguide.com/txt_intro.php
http://www.securityfocus.com/infocus/1674
http://www.isi.edu/gost/brian/security/kerberos.html
http://www.isi.edu/gost/brian/security/kerberos.html
http://www.isi.edu/gost/brian/security/kerberos.html

	A Protocol Layer Survey of Network Security
	Introduction
	Overview of TCP/IP
	Offensive Techniques
	Physical Layer
	Signal Disruption
	Packet Sniffing

	Data Link Layer
	ARP Spoofing
	MAC Flooding

	Network Layer
	Fragmentation Attacks
	Smurf Attack
	Covert Data Channels

	Transport Layer
	TCP/IP Spoofing
	SYN Flooding
	Port Scanning

	Attacks Against the Operating System
	Rootkits
	Shell Shoveling and Relays
	Authentication Mechanism Attack
	Buffer Overflow

	Attacks Against the User
	Attacks on Privacy and Anonymity
	Malicious Cookies.
	Web Bugs.

	Social Engineering
	Phishing
	E-mail Spoofing
	Keystroke Loggers
	Spyware

	Large Scale Attack Techniques
	Virus
	Boot Virus.
	File Virus.
	Macro Virus.
	Script Virus.
	Image Virus.
	Companion Virus.

	Worm
	Flash Worm.
	Multi-Platform Worms.
	Polymorphic Worms.
	Zero-Day Exploit Worms.

	Trojans and Backdoors
	Denial of Service Attacks

	Defenses
	Authentication
	Password Systems
	Kerberos
	Biometrics
	Physical Authentication

	Encryption
	Symmetric-Key Encryption
	Public-Key Encryption
	Digital Signatures

	Firewalls
	Intrusion Detection Systems
	Honeypots and Honeynets

	Antivirus Technology
	Construction of Secure Software

	A Forecast of the Future
	Defensive Precautions
	Conclusion
	References

